子矩阵操作又称块操作,在矩阵运算中,子矩阵的提取和操作应用也十分广泛。因此Eigen中也提供了相关操作的方法。提取的子矩阵在操作过程中既可以用作左值也可以用作
block of size (p,q) ,starting at (i,j)。
matrix.block(i,j,p,q);
matrix.block<p,q>(i,j);
在Eigen中最基本的快操作运算是用.block()完成的。提取的子矩阵同样分为动态大小和固定大小。
块操作 构建动态大小子矩阵
提取块大小为(p,q),起始于(i,j) matrix.block(i,j,p,q)
同样需要注意的是在Eigen中,索引是从0开始。所有的操作方法都可以适用于Array.同样使用固定大小的操作方式在小型矩阵运算时更加的快,但要求在编译时就要知道矩阵的大小。
下面是一个使用示例:
#include
#include "Eigen/Dense"
using namespace std;
using namespace Eigen;
int main()
{
MatrixXf m(4,4);
m<< 1,2,3,4,
5,6,7,8,
9,10,11,12,
13,14,15,16;
cout<<"Block in the middle"<<endl;
cout<<m.block<2,2>(1,1)<<endl<<endl;
for(int i = 1;i <= 3;++i)
{
cout<<"Block of size "<<i<<"x"<<i<<endl;
cout<<m.block(0,0,i,i)<<endl<<endl;
}
}
执行结果如下:
Block in the middle
6 7
10 11
Block of size 1x1
1
Block of size 2x2
1 2
5 6
Block of size 3x3
1 2 3
5 6 7
9 10 11
上面的示例中,.block() 被应用为左值操作,即从中读取数据。事实上,它也可以被用作为右值操作,即也可往里面写入数据。下面是一个右值应用实例。
#include
#include "Eigen/Dense"
using namespace std;
using namespace Eigen;
int main()
{
Array22f m;
m<< 1,2,
3,4;
Array44f a = Array44f::Constant(0.6);
cout<<"Here is the array a:"<<endl<<a<<endl<<endl;
a.block<2,2>(1,1) = m;
cout<<"Here is now a with m copied into its central 2x2 block:"<<endl<<a<<endl<<endl;
a.block(0,0,2,3) = a.block(2,1,2,3);
cout<<"Here is now a with bottom-right 2x3 block copied into top-left 2x2 block:"<<endl<<a<<endl<<endl;
}
执行结果如下:
Here is the array a:
0.6 0.6 0.6 0.6
0.6 0.6 0.6 0.6
0.6 0.6 0.6 0.6
0.6 0.6 0.6 0.6
Here is now a with m copied into its central 2x2 block:
0.6 0.6 0.6 0.6
0.6 1 2 0.6
0.6 3 4 0.6
0.6 0.6 0.6 0.6
Here is now a with bottom-right 2x3 block copied into top-left 2x2 block:
3 4 0.6 0.6
0.6 0.6 0.6 0.6
0.6 3 4 0.6
0.6 0.6 0.6 0.6
.block()方法是一种非常通用的块操作方法。除了这个通用的方法以外,Eigen中还为一些常用的特殊操作提供了特殊的函数。从运行速度的方面来看,你应该在编译阶段尽可能的提供更多的信息。比如,如果你需要操作的块是一个列,那么你可以使用.col()函数。这样Eigen可以得知这个信息以便进行更多的优化。
这些特殊操作方法总结如下。
行子式和列子式
我们可以使用.col()和.row()方法来操作或者提取一个列或者行。
下面是一个使用示例:
#include
#include "Eigen/Dense"
using namespace std;
using namespace Eigen;
int main()
{
MatrixXf m(3,3);
m<< 1,2,3,
4,5,6,
7,8,9;
cout<<"Here is the matrix m:"<<endl<<m<<endl;
cout<<"2nd Row:"<<m.row(1)<<endl;
m.col(2) += 3*m.col(0);
cout<<"After adding 3 times the first column into third column,the matrix m is:\n";
cout<<m<<endl;
}
执行结果如下:
Here is the matrix m:
1 2 3
4 5 6
7 8 9
2nd Row:4 5 6
After adding 3 times the first column into third column,the matrix m is:
1 2 6
4 5 18
7 8 30
Eigen提供了从边角开始提取子矩阵的方法,比如.topLeftCorner()表示从左上角开始提取子矩阵。这些操作总结如下:
#include
#include "Eigen/Dense"
using namespace std;
using namespace Eigen;
int main()
{
Matrix4f m;
m<< 1,2,3,4,
5,6,7,8,
9,10,11,12,
13,14,15,16;
cout<<"m.leftCols(2)="<<endl<<m.leftCols(2)<<endl<<endl;
cout<<"m.bottomRows<2>()="<<endl<<m.bottomRows<2>()<<endl<<endl;
m.topLeftCorner(1,3) = m.bottomRightCorner(3,1).transpose();
cout<<"After assignment,m="<<endl<<m<<endl;
}
执行结果如下:
m.leftCols(2)=
1 2
5 6
9 10
13 14
m.bottomRows<2>()=
9 10 11 12
13 14 15 16
After assignment,m=
8 12 16 4
5 6 7 8
9 10 11 12
13 14 15 16
Eigen中同样也为向量提供了一些子式的操作方法,总结如下:
再次说明一下,所有对矩阵的操作同样适用于Array,所有对列向量的操作同样适用于行向量。
下面是一个使用示例:
#include
#include "Eigen/Dense"
using namespace std;
using namespace Eigen;
int main()
{
ArrayXf v(6);
v<<1,2,3,4,5,6;
cout<<"v.head(3)="<<endl<<v.head(3)<<endl<<endl;
cout<<"v.tail<3>()="<<endl<<v.tail<3>()<<endl<<endl;
v.segment(1,4) *= 2;
cout<<"after 'v.segment(1,4) *= 2',v="<<endl<<v<<endl;
}
执行结果如下:
v.head(3)=
1
2
3
v.tail<3>()=
4
5
6
after 'v.segment(1,4) *= 2',v=
1
4
6
8
10
6