【数据结构——树】二叉树的遍历(前序、中序、后序、层序)迭代+递归

文章目录

    • 二叉树的定义
    • 二叉树的遍历方式
      • 前序遍历
        • 递归DFS
        • 迭代(栈)
      • 中序遍历
        • 递归DFS
        • 迭代(栈)
      • 后序遍历
        • 递归DFS
        • 迭代(栈)
      • 层序遍历
        • 迭代(队列)

二叉树的定义

二叉树是一种常见的树状数据结构,它由一个称为根节点(Root)的节点和最多两个指向其他节点的指针(左子节点和右子节点)组成。

    static class TreeNode{
        public char val;//节点值
        public TreeNode left;//左孩子节点
        public TreeNode right;//右孩子节点
        
        public TreeNode(char val){//节点赋值
            this.val = val;
        }
        
        public TreeNode(char val,TreeNode left,TreeNode right){//节点赋值的同时,指定左右孩子
            this.val = val;
            this.left =left;
            this.right =right;
        }
    }

二叉树的遍历方式

  • 创建二叉树:
    public static TreeNode creatTree(){
        TreeNode A = new TreeNode('A');
        TreeNode B = new TreeNode('B');
        TreeNode C = new TreeNode('C');
        TreeNode D = new TreeNode('D');
        TreeNode E = new TreeNode('E');
        TreeNode F = new TreeNode('F');
        TreeNode G = new TreeNode('G');
        TreeNode H = new TreeNode('H');

        A.left = B;
        A.right = C;
        B.left = D;
        B.right = E;
        C.left = F;
        C.right = G;
        E.right = H;

        return A;
    }

图示为:
【数据结构——树】二叉树的遍历(前序、中序、后序、层序)迭代+递归_第1张图片

前序遍历

前序遍历(根左右) A B D E H C F G

递归DFS

 //全局list集合 //存放树的节点
    static List<TreeNode> list = new ArrayList<>();
    
     // dfs  深度优先递归
    private static void dfs(TreeNode root) {
        if(root == null) return;//用于判空,也做为递归出口
        list.add(root);//根
        dfs(root.left);//左
        dfs(root.right);//右
    }

迭代(栈)

方式一

 //全局list集合 //存放树的节点
    static List<TreeNode> list = new ArrayList<>();
    /**
     * 迭代法 1 + 栈
     * 前序遍历是根左右,首先保存根节点,然后出栈,然后将值入list。
     * 然后入右节点、入左节点再重新进行循环,
     * 即将左节点当做根节点进行操作(即操作左子树),操作完左子树之后再操作右子树。
     */
    private static void iteration1(TreeNode root) {
        if (root == null) return;
        Deque<TreeNode> stack= new LinkedList<>();

        stack.push(root);// 将根节点入栈

        while(!stack.isEmpty()){
             root = stack.pop();//弹出遍历的节点
            list.add(root);
            // 先将右子节点入栈,再将左子节点入栈,这样出栈时就会先访问左子节点
            if(root.right != null) stack.push(root.right);
            if(root.left != null) stack.push(root.left);
        }
    }

方式二(推荐)

//全局list集合 //存放树的节点
    static List<TreeNode> list = new ArrayList<>();
    /**
     * 迭代法  2  + 栈
     * 入根然后一直入左,直到没有左,然后出栈顶(找到最左的节点),
     * 再然后找到最左的节点的右孩子,此时右孩子为根节点。然后循环操作。
     * 要点:根节点、左节点处理完之后,把右节点当做根节点然后又从循环开头开始操作(即整理整个右子树)。
     */
    private static void iteration(TreeNode root) {
        if (root == null) return;
        Deque<TreeNode> stack= new LinkedList<>();
        while(!stack.isEmpty() || root != null){
            while(root != null){  // 左节点一直入栈同时加入到list
                list.add(root);
                stack.push(root);
                root = root.left;
            }
            root = stack.pop();
            root = root.right;//切换右节点继续循环
        }
    }

中序遍历

中序遍历(左根右) D B E H A F C G

递归DFS

	//全局list集合 //存放树的节点
    static List<TreeNode> list = new ArrayList<>();
    /**
     * dfs 递归 中序遍历
     *
     */
    private static void dfs(TreeNode root) {
        if(root == null) return;
        dfs(root.left);
        list.add(root);
        dfs(root.right);
    }

迭代(栈)

方式一

	//全局list集合 //存放树的节点
    static List<TreeNode> list = new ArrayList<>();
    /**
     * 迭代方式一 +栈
     */
    private static void iteration(TreeNode root) {

        if (root == null) return;

        Deque<TreeNode> stack = new LinkedList<>();

        while(!stack.isEmpty() || root != null){//注意  栈可能为空 此时root的左子树都遍历完了  继续遍历root.right  所以要加条件root != null
            if (root != null) { // 指针来访问节点,访问到最底层
                stack.push(root);// 将访问的节点放进栈
                root = root.left; // 左
            }else {
                root = stack.pop();
                list.add(root); // 中
                root = root.right; // 右
            }
        }

方式二(推荐)

	//全局list集合 //存放树的节点
    static List<TreeNode> list = new ArrayList<>();
    /**
     * 迭代方式二 +栈
     */
    private static void iteration1(TreeNode root) {
        if (root == null) return;

        Deque<TreeNode> stack = new LinkedList<>();

        while(!stack.isEmpty() || root != null) {//注意  栈可能为空 此时root的左子树都遍历完了  继续遍历root.right  所以要加条件root != null
                while(root != null){
                    stack.push(root);
                    root = root.left;//访问左子树节点到最底层
                }
                root = stack.pop();//若节点左子树为null 则弹出 加入list
                list.add(root);
                root = root.right;//接着访问弹出节点的左子树
        }
    }

后序遍历

后序遍历(左右根) D H E B F G C A

递归DFS

//全局list集合 //存放树的节点
    static List<TreeNode> list = new ArrayList<>();
        /**
     * dfs 后序递归(左右根)  D  H   E   B   F   G   C   A
     */
    private static void dfs(TreeNode root) {
        if(root == null) return;
        dfs(root.left);//左
        dfs(root.right);//右
        list.add(root);//根
    }

迭代(栈)

方式一

//全局list集合 //存放树的节点
    static List<TreeNode> list = new ArrayList<>();
    /**
     * 迭代方式一 + 栈 (在前序遍历上改良  交换前序遍历的左右孩子入栈的顺序  得到  根右左  然后再逆转过来就是后序遍历
     */
    private static void iteration1(TreeNode root) {
        if(root == null) return;
        Deque<TreeNode> stack = new LinkedList<>();
        stack.push(root);
        while(!stack.isEmpty() ){
             root = stack.pop();
             list.add(root);
             if(root.left != null) stack.push(root.left);//相对于前序遍历,这更改一下入栈顺序  使得右节点率先出栈  (根右左--->左右根)
             if(root.right != null) stack.push(root.right);
        }
        //上面得到的其实就是后序遍历的逆序   所以只要把list逆过来就是后序遍历了 (根右左--->左右根)
        Collections.reverse(list);
    }

方式二(推荐)

 /**
     * 迭代方式二 + 栈
     * 中左一直入栈,直到没有左边,然后查找栈顶节点是否有右节点,没有则出栈入vector,
     * 有则将右节点作为根节点重新循环(即将右边那部分直接当做一棵树)。
     */
    private static void iteration(TreeNode root) {
        if (root == null) {
            return ;
        }

        Stack<TreeNode> stack = new Stack<>();
        TreeNode prev = null;
        while (root != null || !stack.isEmpty()) {
            while (root != null) {
                stack.push(root);
                root = root.left;
            }
                TreeNode peekNode = stack.peek();
                if (peekNode.right != null &&  peekNode.right!= prev) {
                    // 如果右子节点存在且未被访问过,则处理右子树
                    root = peekNode.right;
                } else {
                    // 否则,说明左右子树都已经处理完毕,可以访问当前节点
                    list.add(peekNode);
                    prev = stack.pop();//记录弹出的节点  用于判断下次处理节点时  右孩子节点是否处理过
                }

        }
    }

层序遍历

层序遍历 A B C D E F G H

迭代(队列)

/**
     * 迭代 + 队列
     * @param root
     */
    private static void iteration(TreeNode root) {
        if(root == null) return;
        Queue<TreeNode> queue = new LinkedList<>();//队列
        queue.offer(root);
        while(!queue.isEmpty()){
            int size = queue.size();//记录每层的节点个数
            for (int i = 0; i < size; i++) {//取出每层的节点
                root = queue.poll();
                list.add(root);
                if(root.left != null) queue.offer(root.left);//如果当前节点的孩子节点不为空则加入
                if(root.right != null) queue.offer(root.right);
            }
        }

    }

你可能感兴趣的:(数据结构,数据结构,算法,java)