Tensorflow 多核GPU编程问题排查

很久没有动tensorflow了,最近实验做个分词的工具(这不是重点),以前都是在单个gpu上面运行,突然想尝试在多核GPU下跑一跑。

在网上随便找了篇帖子:https://blog.csdn.net/winycg/article/details/79759294参照着改一改,代码如下:

参数定义:

def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

bi-lstm定义:

def bi_lstm(X_inputs):
    embedding = tf.get_variable("embedding", [vocab_size, embedding_size], dtype=tf.float32, trainable=False)
    # X_inputs.shape = [batchsize, timestep_size]  ->  inputs.shape = [batchsize, timestep_size, embedding_size]
    inputs = tf.nn.embedding_lookup(embedding, X_inputs)
    cell_fw = rnn.MultiRNNCell([rnn.DropoutWrapper(cell=tf.nn.rnn_cell.LSTMCell(hidden_size, forget_bias=1.0, state_is_tuple=True, name='fw_lstm_cell'), input_keep_prob=1.0, output_keep_prob=keep_prob) for _ in range(layer_num)], state_is_tuple=True)
    cell_bw = rnn.MultiRNNCell([rnn.DropoutWrapper(cell=tf.nn.rnn_cell.LSTMCell(hidden_size, forget_bias=1.0, state_is_tuple=True, name='bw_lstm_cell'), input_keep_prob=1.0, output_keep_prob=keep_prob) for _ in range(layer_num)], state_is_tuple=True)
    # **4.初始状态
    initial_state_fw = cell_fw.zero_state(batch_size, tf.float32)
    initial_state_bw = cell_fw.zero_state(batch_size, tf.float32)
    # **5.bi-lstm 计算
    with tf.variable_scope('bidirection_rnn'):
        # *** 下面分别计算两个网络的output 和state
        # forward direction
        outputs_fw = list()
        state_fw = initial_state_fw
        with tf.variable_scope('fw'):
            for timestep in range(timestep_size):
                if timestep > 0:
                    tf.get_variable_scope().reuse_variables()
                (output_fw, state_fw) = cell_fw(inputs[:, timestep, :], state_fw)
                outputs_fw.append(output_fw)
        # backward direction
        outputs_bw = list()
        state_bw = initial_state_bw
        with tf.variable_scope('bw'):
            inputs = tf.reverse(inputs, [1])
            for timestep in range(timestep_size):
                if timestep > 0:
                    tf.get_variable_scope().reuse_variables()
                (output_bw, state_bw) = cell_bw(inputs[:, timestep, :], state_bw)
                outputs_bw.append(output_bw)
        # *** 然后把 output_bw 在 timestep 维度进行翻转
        # 把两个oupputs 拼成 [timestep_size, batch_size, hidden_size*2]
        output = tf.concat([outputs_fw, outputs_bw], 2)
        # output.shape 必须和 y_input.shape=[batch_size,timestep_size] 对齐
        output = tf.transpose(output, perm=[1, 0, 2])
        output = tf.reshape(output, [-1, hidden_size * 2])
    # ***********************************************************
    softmax_w = weight_variable([hidden_size * 2, class_num])
    softmax_b = bias_variable([class_num])
    logits = tf.matmul(output, softmax_w) + softmax_b
    return logits

合并梯度:

def average_gradients(tower_grads):
    average_grads=[]
    for grad_and_vars in zip(*tower_grads):
        grads=[]
        for g, _ in grad_and_vars:
            expend_g=tf.expand_dims(g,0)
            grads.append(expend_g)
        grad=tf.concat(grads,0)
        grad=tf.reduce_mean(grad,0)
        v=grad_and_vars[0][1]
        grad_and_var=(grad,v)
        average_grads.append(grad_and_var)
    return average_grads

训练模块

def train(data_engine):
    with tf.device("/cpu:0"):
        tower_grads = []
        X_inputs = tf.placeholder(tf.int32, [None, timestep_size], name='X_input')
        y_inputs = tf.placeholder(tf.int32, [None, timestep_size], name='y_input')
        elr = tf.train.exponential_decay(lr, global_step, decay_steps, decay_rate, staircase=True, name=None)
        optimizer = tf.train.AdamOptimizer(learning_rate=elr)
        with tf.variable_scope(tf.get_variable_scope()):
            for i in range(gpu_nums):
                with tf.device("/gpu:%d" % i):
                    with tf.name_scope("tower_%d" % i):
                        _x = X_inputs[i * batch_size:(i + 1) * batch_size]
                        _y = y_inputs[i * batch_size:(i + 1) * batch_size]
                        logits = bi_lstm(_x)
                        loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=tf.reshape(_y, [-1]), logits=logits))
                        tf.get_variable_scope().reuse_variables()
                        grads = optimizer.compute_gradients(loss)
                        tower_grads.append(grads)
                        if i == 0:
                            logits_test = bi_lstm(_x)
                            test_v = tf.cast(tf.argmax(tf.reshape(logits_test, [-1, timestep_size, class_num]), 2), tf.int32)

        grads = average_gradients(tower_grads)
        train_op = optimizer.apply_gradients(grads, global_step=global_step)
        # 梯度下降计算
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            for iteration in range(whole_epoch):
                x1, y1 = data_engine.train_next_batch(batch_size * gpu_nums)
                _, t_loss = sess.run([train_op, loss], feed_dict={X_inputs: x1, y_inputs: y1, keep_prob: 0.5, lr: 0.01})
                if iteration % print_step == 0:
                    print('iteration: ', iteration)
                    x2, y2 = data_engine.validate_next_batch(batch_size)
                    y_pre = sess.run(test_v, feed_dict={X_inputs: x2, y_inputs: y2, keep_prob: 1.0})
                    print('loss: ', t_loss)
                    nozero_evaluate(y2, y_pre)

但是在运行的时候发现梯度合并报错:

Traceback (most recent call last):
  File "run.py", line 13, in 
    train(data_engine)
  File "/4T/home/leijp/cut2/target/net2.py", line 132, in train
    grads = average_gradients(tower_grads)
  File "/4T/home/leijp/cut2/target/net2.py", line 39, in average_gradients
    expend_g=tf.expand_dims(g,0)
  File "/usr/local/anaconda3/lib/python3.6/site-packages/tensorflow/python/util/deprecation.py", line 488, in new_func
    return func(*args, **kwargs)
  File "/usr/local/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/array_ops.py", line 137, in expand_dims
    return gen_array_ops.expand_dims(input, axis, name)
  File "/usr/local/anaconda3/lib/python3.6/site-packages/tensorflow/python/ops/gen_array_ops.py", line 2088, in expand_dims
    "ExpandDims", input=input, dim=axis, name=name)
  File "/usr/local/anaconda3/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py", line 528, in _apply_op_helper
    (input_name, err))
ValueError: Tried to convert 'input' to a tensor and failed. Error: None values not supported.

把梯度打印出来:

 (None, ),
(None, ),
 (None, ),
  (None, ),

发现在GPU:1计算梯度的时候,梯度竟然为None,不明所以,于是开始网上查,还好网上有一篇类似的错误:https://stackoverflow.com/questions/37593275/multi-gpu-tower-valueerror-none-values-not-supported?answertab=active#tab-top

下面有人回答应该是变量作用域的问题,于是我把参数定义代码改了一下:

def weight_variable(shape):
    # initial = tf.truncated_normal(shape, stddev=0.1)
    # return tf.Variable(initial)
    return tf.get_variable(name="weights", shape=shape, initializer=tf.truncated_normal_initializer(mean=0, stddev=0.1))

def bias_variable(shape):
    # initial = tf.constant(0.1, shape=shape)
    # return tf.Variable(initial)
    return tf.get_variable(name="bias", shape=shape, initializer=tf.constant_initializer(0.1))

再跑一次,就成功了。

因为之前一直是单核计算,没有涉及到多少变量重用,所以就没怎么关注作用域的问题,稀里糊涂用了这么久。后面认真的学习了下,发现一般来说,使用tf.get_variable()要比使用tf.Variable()来进行变量定义更保险,因为只要在复用代码前加一句tf.get_variable_scope().reuse_variables()就可以让之前定义的变量重用,这样两个GPU就能共享同一份权值。

后面我输出梯度的时候,变成了这样, 以"weights"为例:

# 梯度
GPU:0

GPU:1

# 权值
GPU:0

GPU:1

梯度是两个不同的梯度,权值是同一份权值,这与多核GPU,数据并行的思路是一致的。

但为什么权值被重用了,而梯度却是各一份呢?

原来变量的定义是在tf.variable_scope()下,求解梯度过程是在tf.name_scope()下。

tf.variable_scope()下相同的scope_name可以让变量有相同的命名,包括tf.get_variable()得到的变量,还有tf.Variable()的变量,不加tf.get_variable_scope().reuse_variables()的话就不能重用。

tf.name_scope()让变量有相同的命名,只是限于tf.Variable()的变量,而且scope_name不同的话,定义的tf.Variable()域也会不同,所以产生的梯度自然不是同一份。

你可能感兴趣的:(Tensorflow 多核GPU编程问题排查)