我国的半导体芯片封装产业起步晚,与国际先进水平仍有很大差距,是中国半导体产业链中较为薄弱且急需发展的产业。
封装产业的重要支撑包括各种类的封装材料及技术,各制程的关键工艺、设备和技术。从现阶段国内半导体产业的发展现状来看,各制造领域的芯片封装材料主要表现为部分非核心材料可实现进口替代,但关键材料特别是镀层材料及光刻胶等多为国外垄断,且存在发展配套不齐,材料的纯度、精细度和质量稳定性不足等问题。
各制程环节的关键工艺主要表现为工艺技术滞后和设备技术落后两大问题。因此,我国的封装产业未来要从芯片生产后段难度较低的配套产业加速转变为一个独立的封装测试产业生态链,亟须在材料技术、设备技术及工艺技术多领域全面发力,以此来适应和满足当前半导体产业和封装产业飞速发展的需要。
如下图,制造芯片主要分为三个步骤。
芯片封装是基础,具体形成完整功能的系统,如手机,具体的电子封装的步骤如下图所示。
现在的电子系统往往不能由一种集成电路芯片组成,它必须与其他元件系统互连,才能实现整体的系统功能。芯片封装,是将芯片封装体与其他元器件组合,装配成完整的系统或电子设备,并确保整个系统综合性能实现的工程。
2. QFP/ PFP类型封装,适用于一般大规模或超大型集成电路
3.BGA类型封装,当IC的频率超过100MHZ时,传统封装方式可能会产生所谓的“CrossTalk”现象,而且当IC的管脚数大于208 Pin时,传统的封装方式有其困难度。因此,除使用QFP封装方式外,现今大多数的高脚数芯片皆转为使用BGA封装技术。
4.Flip Chip封装,又称倒装片,是近年比较主流的封装形式之一,主要被高端器件及高密度封装领域采用。在所有表面安装技术中,倒装芯片可以达到最小、最薄的封装
芯片封装的目的在于确保芯片经过封装之后具有较强的机械性能、良好的电气性能和散热性能。主要功能作用有以下几点:
总而言之,封装技术是一项跨学科、跨行业的综合工程,广泛涉及材料、电子、热学、机械和化学等多种学科,是微电子器件发展不可分割的重要组成部分。
可靠性测试主要是产品在一些特定的状态(特定使用环境与一定时间),对产品寿命影响的评估,确认产品的质量是否稳定,同时进行最佳的修正。
目前芯片载板封装的可靠性测试,大部分都是依照各个封装厂客户所要求的采购规范来执行,同时也会参照其他厂家或某些国际公认的可靠性规范来进行检测。以下是进行可靠性测试最常被采用的组织的链接:
(1)国际电工委员会(IEC)
(2)美国军规(Milstd)
(3)国际电子工业联接协会(IPC)
(4)半导体工业标准组织(JEDEC)
(5)日本工业标准协会(JIS)
SIP是指把构成一个完整电子系统的多个芯片封装在一起的技术,例如将移动终端中的存储器、接口电路和处理器都封装在一个封装体内,以实现电子设计的微型化。
SiP能够实现不同源的多个芯片以及不同材质横向及纵向的异质集成,可实现高密度系统级封装,进一步提升产品性能、降低功耗,如下图:
与系统级封装技术相对应的是SoC(System on Chip), SoC是高度集成的芯片产品。SoC与SiP极为相似,两者均是将一个包含逻辑组件、内存组件,甚至包含被动组件的系统整合在一个单位中。SoC是从设计的角度出发,将系统所需的组件高度集成到一块芯片上。SiP是从封装的角度出发,对不同芯片进行并排或叠加的封装方式。
从集成度而言,一般情况下,SoC只集成AP之类的逻辑系统,而SiP集成了AP、DDR、SDRAM。
另外,SiP是把多个半导体芯片和无源器件封装在同一个芯片内,组成一个系统级的芯片,而不再用线路板或者载板来作为承载芯片连接的载体,可以解决载板自身制造工艺极限所造成的封装工艺瓶颈问题
初期的SiP主要是将多芯片在二维平面作分布结构设计,通过载板实现集成,虽然实现了SiP的定义,但是在体积、运行效率和功耗等技术指标上还是相对无法满足消费市场上的高端电子产品的需要。随着芯片封装技术的不断发展,部分芯片由二维平面分布排列的方式走向三维堆叠的方式,这是目前较为先进的SiP方式,我们可以称之为2.5D SiP工艺,如下图:
3D封装将CPU/GPU/SoC与DRAM堆叠并在垂直方向上连接整合,封装的面积比2.5D封装工艺更小,并且在2.5D封装的基础上还去掉了TSV interposer的部分,如下图:
可以预料,多芯片的3D叠加SiP技术将进一步缩短互连互通的线路距离,进一步提高集成度等,这也是最终3D SiP的发展目标。
2.5D指的就是芯片做好先不封装,而是在同一个基板上平行排列,然后通过引线键合或倒装芯片或硅通孔的工艺连接到中介层(Inter-poser)上,将多个功能芯片在垂直方向上连接起来的制造工艺。
其封装工艺主要分为以下三个步骤:
1.形成3D-DRAM芯片集成。
2.形成Si-Interposer。
3.将第一步的3D-DRAM芯片和CPU/GPU/SoC芯片与Si-Inter-poser集成。
TSV是三维的芯片堆叠技术,通过硅通孔技术将多层芯片互连导通,是一项高密度封装技术。TSV取代的是传统的低成本、高良率的引线键合技术,所以TSV将长期应用在高性能、高密度封装领域,目前被认为是最具有潜力的3D集成封装关键技术。TSV技术主要通过铜等导电物质的填充完成硅通孔的垂直电气互连,减小信号延迟,降低电容、电感,实现芯片的低功耗、高速通信,增加带宽和实现器件集成的小型化需求。
TSV主要工艺流程:
扇出型晶圆级封装一般是将芯片封装在8英寸或12英寸的晶圆内,通常线宽和线距可以达到2/2微米。扇出型板级封装是将芯片封装在方形基板上,规格一般要比晶圆大,但具体尺寸业界还未形成统一标准。很显然,尺寸更大的基板容纳的芯片数量更多,例如:24×24英寸的基板所容纳的芯片数量是8英寸晶圆的11倍;除了尺寸更大的原因之外,还由于晶圆有圆边的存在,其面积使用率小于85%,而方形基板的使用率可以超过95%。由于板级封装生产效率的提高,在保证良率大于90%的情况下,可大幅度降低生产成本,最多可带来50%的降幅。除此之外,板级封装还具有以下优势:散热性能和电气性能更好,同时不需要用中介层、倒装、填充层、封装载板等,封装尺寸更小,因此具有更好的市场竞争力。如图:
在过去的几十年里,半导体行业的发展基本遵循着摩尔定律的规则和轨迹:①单位芯片内可容纳的元器件数量每18个月会增加一倍;②芯片封装的制造成本每18个月会降低一半。在摩尔定律放缓的今天,业界普遍认为超越摩尔定律的关键在于先进封装技术的升级,这也是能够极大推动半导体经济效益及产品性能提升的关键。
随着科技日新月异的发展,新兴领域例如5G通信、人工智能、物联网等的出现以及传统领域的升级迭代对于电子产品的性能以及尺寸提出了更高的要求。对于集成电路制造商而言,新型封装正在扮演一个重要的角色。当前,先进封装的发展呈爆炸式向各个方向发展,而每个开发相关技术的公司都将自己的技术独立命名并注册商标,如台积电的InFO(Integrated Fan-Out Package)、CoWoS(Chip-on-Wafer-on-Substrate),日月光集团的FoCoS(Fan-out Chip on Substrate),安靠公司的SLIM(Silicon-less Integrated Module)、SWIFT等。
纵览几十年特别是近十年封装技术的发展历程,主要体现在以下方面:①单芯片向多芯片发展;②2D向3D转变;③封装集成度不断增加;④晶圆级向面积更大的板级发展。对于封装所提出的要求是小型化,提升高热环境下的可靠性及稳定性,提升集成度,适应高密度、多引脚、多接点的封装并且兼顾不同材料的应用以及环保要求。