对称加密
加密解密使用同一个KEY
常见的三个
- DES 数据加密标准(用的少,强度不够)
- 3DES 使用三个密钥,对相同的数据执行3次加密(三个密钥,不好保管)
- AES 高级密码标准
应用模式
ECB: 电子密码本模式。每一块数据,独立加密
CBC: 密码分组链接模式,
加密解密依赖于上一块数据,可以保证数据的完整性。
OpenSSL终端演示
下面主要采用DES、AES
和 ECB、CBC
两两组合的方式进行演示,涉及的终端命令主要有以下一些
加密
-
AES + ECB
加密“hello”字符串echo -n hello | openssl enc -aes-128-ecb -K 616263 -nosalt | base64
-
AES + CBC
加密“hello”字符串echo -n hello | openssl enc -aes-128-cbc -iv 0102030405060708 -K 616263 -nosalt | base64
解密
-
AES + ECB
解密echo -n d1QG4T2tivoi0Kiu3NEmZQ== | base64 -D | openssl enc -aes-128-ecb -K 616263 -nosalt –d
-
AES + CBC
解密echo -n u3W/N816uzFpcg6pZ+kbdg== | base64 -D | openssl enc -aes-128-cbc -iv 0102030405060708 -K 616263 -nosalt –d
1、DES + ECB
加密
-
- vi abc.txt
000000000000
111111111111
222222222222
000000000000
111111111111
222222222222
000000000000
111111111111
222222222222
000000000000
111111111111
222222222222
000000000000
111111111111
222222222222
000000000000
111111111111
222222222222
-
对称加密(默认会加盐):
openssl enc -des-ecb -K 016263 -nosalt -in abc.txt -out msg1.bin
enc
: 表示加密方式,即对称加密msg1.bin: 二进制文件
查看二进制文件:
xxd msg1.bin
将第二个重复的前两个`00,改成88`
000000000000
111111111111
222222222222
880000000000
111111111111
222222222222
000000000000
......
查看此时的加密后密文二进制,与上面进行对比
变化:
931f 4a54 79bf 730f 4453 2df5 e152 38f1
变成了c7e1 1de2 c778 9df6 4d79 8bec 04ad 08c4
。说明修改两个字符,其最小单位16字节
如果修改
1
个字符,最小单位是8
个字节。所以加密过程中,最低是8字节
2、DES + CBC
vi abc.txt(内容与1中相同)
加密:
openssl enc -des-cbc -K 616263 -iv 0102030405060708 -nosalt -in abc.txt -out msg3.bin
-
修改一个字符,获取 msg4.bin
-iv
:向量的表示方式616263
:加密的key,换成 abc 也是可以的
与ECB模式对比:从第2个开始,其二进制就不同了(CBC是链式加密)
注:剩余的AES+ECB、AES+CBC
请读者自行演练,这里就不在做演示了
代码演示
同样是通过DES、AES
和 ECB、CBC
两两组合的方式进行演示
1、AES + ECB
- (void)testEnc{
// AES + ECB 加密
NSString *key = @"abc";
NSString *encStr = [[EncryptionTools sharedEncryptionTools] encryptString:@"hello" keyString:key iv:nil];
NSLog(@"AES + ECB : %@", encStr);
}
AES + ECB : d1QG4T2tivoi0Kiu3NEmZQ==
$ echo -n hello | openssl enc -aes-128-ecb -K 616263 -nosalt | base64
//与程序运行结果是一样的
d1QG4T2tivoi0Kiu3NEmZQ==
$ echo -n d1QG4T2tivoi0Kiu3NEmZQ== | base64 -D |openssl enc -aes-128-ecb -K 616263 -nosalt -d
hello%
echo -n hello
输出hello|
:表示输出符注:des 和 aes对比,加密强度不一样
2、AES + CBC
- (void)testEnc{
// 2、AES + CBC 加密
uint8_t iv[8] = {1, 2, 3, 4, 5, 6, 7, 8};
NSData *data = [NSData dataWithBytes:iv length:sizeof(iv)];
NSString *key = @"abc";
NSString *encStr = [[EncryptionTools sharedEncryptionTools] encryptString:@"hello" keyString:key iv:data];
//解密
NSString * decStr = [[EncryptionTools sharedEncryptionTools] decryptString:encStr keyString:key iv:data];
NSLog(@"AES + CBC : %@", encStr);
NSLog(@"AES + CBC : %@", decStr);
}
//打印结果
AES + CBC : u3W/N816uzFpcg6pZ+kbdg==
AES + CBC : hello
$ echo -n hello | openssl enc -aes-128-cbc -K 616263 -iv 0102030405060708 -nosalt | base64
u3W/N816uzFpcg6pZ+kbdg==
$ echo -n u3W/N816uzFpcg6pZ+kbdg== | base64 -D |openssl enc -aes-128-cbc -K 616263 -iv 0102030405060708 -nosalt -d
hello%
3、DES + ECB
- (void)testEnc{
// 3、DES + ECB
[EncryptionTools sharedEncryptionTools].algorithm = kCCAlgorithmDES;
NSString *key = @"abc";
NSString *encStr = [[EncryptionTools sharedEncryptionTools] encryptString:@"hello" keyString:key iv:nil];
NSLog(@"DES + ECB : %@", encStr);
}
//运行结果
DES + ECB : HQr0Oij2kbo=
$ echo -n hello | openssl enc -des-ecb -K 616263 -nosalt | base64
HQr0Oij2kbo=
$ echo -n HQr0Oij2kbo= | base64 -D | openssl enc -des-ecb -K 616263 -nosalt -d
hello%
4、DES + CBC
- (void)testEnc{
// 4、DES + CBC
[EncryptionTools sharedEncryptionTools].algorithm = kCCAlgorithmDES;
uint8_t iv[8] = {1, 2, 3, 4, 5, 6, 7, 8};
NSData *data = [NSData dataWithBytes:iv length:sizeof(iv)];
NSString *key = @"abc";
NSString *encStr = [[EncryptionTools sharedEncryptionTools] encryptString:@"hello" keyString:key iv:data];
//解密
NSString * decStr = [[EncryptionTools sharedEncryptionTools] decryptString:encStr keyString:key iv:data];
NSLog(@"AES + CBC : %@", encStr);
NSLog(@"AES + CBC : %@", decStr);
}
//运行结果
AES + CBC : alvrvb3Gz88=
AES + CBC : hello
$ echo -n hello | openssl enc -des-cbc -K 616263 -iv 0102030405060708 -nosalt | base64
alvrvb3Gz88=
$ echo -n alvrvb3Gz88= | base64 -D | openssl enc -des-cbc -K 616263 -iv 0102030405060708 -nosalt -d
hello%
加密解密实现
以下是DES、AES的完整对称加解密的代码封装
#import
#import
/**
* 终端测试指令
*
* DES(ECB)加密
* $ echo -n hello | openssl enc -des-ecb -K 616263 -nosalt | base64
*
* DES(CBC)加密
* $ echo -n hello | openssl enc -des-cbc -iv 0102030405060708 -K 616263 -nosalt | base64
*
* AES(ECB)加密
* $ echo -n hello | openssl enc -aes-128-ecb -K 616263 -nosalt | base64
*
* AES(CBC)加密
* $ echo -n hello | openssl enc -aes-128-cbc -iv 0102030405060708 -K 616263 -nosalt | base64
*
* DES(ECB)解密
* $ echo -n HQr0Oij2kbo= | base64 -D | openssl enc -des-ecb -K 616263 -nosalt -d
*
* DES(CBC)解密
* $ echo -n alvrvb3Gz88= | base64 -D | openssl enc -des-cbc -iv 0102030405060708 -K 616263 -nosalt -d
*
* AES(ECB)解密
* $ echo -n d1QG4T2tivoi0Kiu3NEmZQ== | base64 -D | openssl enc -aes-128-ecb -K 616263 -nosalt -d
*
* AES(CBC)解密
* $ echo -n u3W/N816uzFpcg6pZ+kbdg== | base64 -D | openssl enc -aes-128-cbc -iv 0102030405060708 -K 616263 -nosalt -d
*
* 提示:
* 1> 加密过程是先加密,再base64编码
* 2> 解密过程是先base64解码,再解密
*/
@interface EncryptionTools : NSObject
+ (instancetype)sharedEncryptionTools;
/**
@constant kCCAlgorithmAES 高级加密标准,128位(默认)
@constant kCCAlgorithmDES 数据加密标准
*/
@property (nonatomic, assign) uint32_t algorithm;
/**
* 加密字符串并返回base64编码字符串
*
* @param string 要加密的字符串
* @param keyString 加密密钥
* @param iv 初始化向量(8个字节)
*
* @return 返回加密后的base64编码字符串
*/
- (NSString *)encryptString:(NSString *)string keyString:(NSString *)keyString iv:(NSData *)iv;
/**
* 解密字符串
*
* @param string 加密并base64编码后的字符串
* @param keyString 解密密钥
* @param iv 初始化向量(8个字节)
*
* @return 返回解密后的字符串
*/
- (NSString *)decryptString:(NSString *)string keyString:(NSString *)keyString iv:(NSData *)iv;
@end
#import "EncryptionTools.h"
@interface EncryptionTools()
@property (nonatomic, assign) int keySize;
@property (nonatomic, assign) int blockSize;
@end
@implementation EncryptionTools
+ (instancetype)sharedEncryptionTools {
static EncryptionTools *instance;
static dispatch_once_t onceToken;
dispatch_once(&onceToken, ^{
instance = [[self alloc] init];
instance.algorithm = kCCAlgorithmAES;
});
return instance;
}
- (void)setAlgorithm:(uint32_t)algorithm {
_algorithm = algorithm;
switch (algorithm) {
case kCCAlgorithmAES:
self.keySize = kCCKeySizeAES128;
self.blockSize = kCCBlockSizeAES128;
break;
case kCCAlgorithmDES:
self.keySize = kCCKeySizeDES;
self.blockSize = kCCBlockSizeDES;
break;
default:
break;
}
}
- (NSString *)encryptString:(NSString *)string keyString:(NSString *)keyString iv:(NSData *)iv {
// 设置秘钥
NSData *keyData = [keyString dataUsingEncoding:NSUTF8StringEncoding];
uint8_t cKey[self.keySize];
bzero(cKey, sizeof(cKey));
[keyData getBytes:cKey length:self.keySize];
// 设置iv
uint8_t cIv[self.blockSize];
bzero(cIv, self.blockSize);
int option = 0;
if (iv) {
[iv getBytes:cIv length:self.blockSize];
option = kCCOptionPKCS7Padding;
} else {
/*
- kCCOptionPKCS7Padding | kCCOptionECBMode 本模式 - ECB模式
- kCCOptionPKCS7Padding 链的模式 - CBC模式
*/
option = kCCOptionPKCS7Padding | kCCOptionECBMode;
}
// 设置输出缓冲区
NSData *data = [string dataUsingEncoding:NSUTF8StringEncoding];
size_t bufferSize = [data length] + self.blockSize;
void *buffer = malloc(bufferSize);
// 开始加密
size_t encryptedSize = 0;
//加密解密都是它 -- CCCrypt
/*
- 参数1:kCCEncrypt 加密 / kCCDeccrypt 解密
- 参数2:加密算法
- 参数3:加密选项 ECB / CBC
- 参数4:KEY的地址
- 参数5:KEY的长度
- 参数6:iv初始化向量
- 参数7:加密的数据
- 参数8:加密数据的长度
- 参数9:密文的内存地址
- 参数10:密文缓冲区的大小
- 参数11:数据的指针(加密结果大小)
*/
CCCryptorStatus cryptStatus = CCCrypt(kCCEncrypt,
self.algorithm,
option,
cKey,
self.keySize,
cIv,
[data bytes],
[data length],
buffer,
bufferSize,
&encryptedSize);
NSData *result = nil;
if (cryptStatus == kCCSuccess) {
result = [NSData dataWithBytesNoCopy:buffer length:encryptedSize];
} else {
free(buffer);
NSLog(@"[错误] 加密失败|状态编码: %d", cryptStatus);
}
return [result base64EncodedStringWithOptions:0];
}
- (NSString *)decryptString:(NSString *)string keyString:(NSString *)keyString iv:(NSData *)iv {
// 设置秘钥
NSData *keyData = [keyString dataUsingEncoding:NSUTF8StringEncoding];
uint8_t cKey[self.keySize];
bzero(cKey, sizeof(cKey));
[keyData getBytes:cKey length:self.keySize];
// 设置iv
uint8_t cIv[self.blockSize];
bzero(cIv, self.blockSize);
int option = 0;
if (iv) {
[iv getBytes:cIv length:self.blockSize];
option = kCCOptionPKCS7Padding;
} else {
option = kCCOptionPKCS7Padding | kCCOptionECBMode;
}
// 设置输出缓冲区
NSData *data = [[NSData alloc] initWithBase64EncodedString:string options:0];
size_t bufferSize = [data length] + self.blockSize;
void *buffer = malloc(bufferSize);
// 开始解密
size_t decryptedSize = 0;
CCCryptorStatus cryptStatus = CCCrypt(kCCDecrypt,
self.algorithm,
option,
cKey,
self.keySize,
cIv,
[data bytes],
[data length],
buffer,
bufferSize,
&decryptedSize);
NSData *result = nil;
if (cryptStatus == kCCSuccess) {
result = [NSData dataWithBytesNoCopy:buffer length:decryptedSize];
} else {
free(buffer);
NSLog(@"[错误] 解密失败|状态编码: %d", cryptStatus);
}
return [[NSString alloc] initWithData:result encoding:NSUTF8StringEncoding];
}
@end
主要是通过系统的CCCrypt
实现,其中涉及11个参数,分别是
- 参数1:kCCEncrypt 加密 / kCCDeccrypt 解密
- 参数2:加密算法
- 参数3:加密选项 ECB / CBC
- 参数4:KEY的地址
- 参数5:KEY的长度
- 参数6:iv初始化向量
- 参数7:加密的数据
- 参数8:加密数据的长度
- 参数9:密文的内存地址
- 参数10:密文缓冲区的大小
- 参数11:数据的指针(加密结果大小)
安全隐患:使用系统函数同样有数据泄漏的风险
调试CCCrypt
下面我们通过断点调试来说明其安全隐患
加符号断点
CCCrypt
-
运行程序
-
通过寄存器获取参数,发现 hello 是明文,这是非常不安全的
有以下的改进建议
-
1、在系统函数之上做一层封装,例如 使用按位异或(最简单的封装)
加密:传入string时,做一次
按位异或运算
解密:先解密,再按位异或
2、方法名混淆 - 即方法名不变,但打包上架后进行了一系列的变化
总结
对称加密在iOS中使用的是系统的
CCCrypt
,有11个参数直接使用系统的
CCCrypt
是存在明文泄漏的安全隐患的,所以需要在系统函数之上在做一些操作,来保证明文的安全性