hdu6212 Zuma(区间dp+消除问题(含连锁反应))

题目

T(T<=100)组样例,每次给出长为n(n<=200)的01串,代表黑(0)白(1)祖玛球,你可以向串中插入黑球(0)或者白球(1),

如果连续的0或连续的1大于等于3个它们就会爆掉(自动,不可手动控制),后面的球会跟上来,且爆炸具有连锁反应,

保证初始情况下不存在大于等于3个球连在一起的局面,问最小的插入次数。

思路来源

https://blog.csdn.net/Dream_Lolita/article/details/78764613

题解

bzoj1032是这个题的extend版(k种颜色),然而据说是假题,没有合理复杂度的标程orz

这个题由于只有两种颜色(01),且保证初始情况没有大于等于三个连在一起的,

且爆炸不可以手动控制,故应该是个真题

 

首先,像方块消除一样,把相同数字的尺取到一起,构成一个新序列(颜色,个数),

这样保证新序列相邻的一定颜色不同,

首先,是经典的拆成两段爆掉,枚举划分点k

其次,考虑[l][r]的两个端点l和r,

如果二者颜色相同,

①如果这两堆之和>=3个,则可以等[l+1][r-1]爆掉之后,自动爆掉

②如果这两堆之和为2个,则可以等[l+1][r-1]爆掉之后,加1个球爆掉

③如果这两堆之和<=3个(1+1或1+2),则可以在[l+1,r-1]中找到一个和它们相同颜色且只有一个球的位置k,

分别爆掉[l+1][k-1]和[k+1,r-1],再把l,k,r三堆合一起爆掉((1+1)+1 或 (1+1)+2)

 

自己想很不好想,也怕漏掉转移状态,感觉dp还是需要模拟实际过程的

心得

开始这题写了方块消除类似的记忆化搜索,WA到自闭

后来想想实际是因为本题自动爆炸,

故转移不可像方块消除那样枚举后面有几个块相同来选择性转移

代码

#include
#include
#include
#include
#include
using namespace std;
const int N=205;
char s[N],v[N];
int t,n,m,b[N],dp[N][N];
int main(){
	scanf("%d",&t);
	for(int ca=1;ca<=t;++ca){
		scanf("%s",s+1);
		n=strlen(s+1);
		s[0]='#';
		m=0;
		for(int i=1;i<=n;++i){
			if(s[i]!=s[i-1])b[++m]=1,v[m]=s[i];
			else b[m]++;
		}
		n=m;
		for(int i=1;i<=n;++i){
			dp[i][i]=3-b[i];//需要补充3-b[i]个 
		}
		for(int len=2;len<=n;++len){
			for(int l=1;l+len-1<=n;++l){
				int r=l+len-1;
				dp[l][r]=n<<1;//最多2*n爆掉所有 
				for(int k=l;k=3 左右合在一起会爆 
					if(b[l]+b[r]<=3){//<=3(1+1或1+2) 总可以保证先不炸掉最后炸 
						for(int k=l+2;k

 

你可能感兴趣的:(#,区间dp,区间dp,经典题目,动态规划)