栈和队列篇

目录

一、栈

1.栈的概念及结构

1.1栈的概念

1.2栈的结构示意图

2.栈的实现

2.1支持动态增长的栈的结构

2.2压栈(入栈)

2.3出栈

2.4支持动态增长的栈的代码实现

二、队列

1.队列的概念及结构

1.1队列的概念

1.2队列的结构示意图

2.队列的实现

2.1队列的结构

2.2队尾入队列

2.3队头出队列

2.4队列的代码实现

一、栈

1.栈的概念及结构

1.1栈的概念

        栈是一种特殊的线性表。栈只允许在固定的一端进行插入和删除数据的操作,栈的插入操作叫做压栈(进栈),栈的删除操作叫做出栈,进行数据插入和删除操作的一端叫做栈顶,另一端为栈底。栈中的元素遵循先进后出的原则。

1.2栈的结构示意图

栈和队列篇_第1张图片

2.栈的实现

        栈一般分为静态栈和支持动态增长的栈,静态栈由于栈的空间大小固定不具实用性,所以我们只针对支持动态增长的栈进行代码实现:

2.1支持动态增长的栈的结构

        栈的实现一般使用数组形式来实现,支持动态增长的栈即开辟一个动态数组a用来存储数据,当栈的容量满了之后方便扩容。

// 支持动态增长的栈
typedef int STDataType;
typedef struct Stack
{
	STDataType* a;
	int top;		// 栈顶
	int capacity;  // 容量 
}Stack;

2.2压栈(入栈)

        每次压栈首先检查栈的容量是否已满,再决定是否需要扩容,压栈的元素变为新的栈顶

// 入栈 
void StackPush(Stack* ps, STDataType data)
{
	assert(ps);
	if (ps->top == ps->capacity)
	{
		int newcapacity = ps->capacity == 0 ? 5 : (ps->capacity) * 2;
		STDataType* tmp = (STDataType*)realloc(ps->a, sizeof(STDataType) * newcapacity);
		if (tmp == NULL)
		{
			perror("realloc:");
			return;
		}
		ps->a = tmp;
		ps->capacity = newcapacity;
	}
	ps->a[ps->top] = data;
	ps->top++;
}

2.3出栈

        出栈后新的栈顶变为出栈前的栈顶的前一个元素

// 出栈 
void StackPop(Stack* ps)
{
	assert(ps);
	assert(!StackEmpty(ps));
	ps->top--;
}

2.4支持动态增长的栈的代码实现

#pragma once
#include
#include
#include

// 支持动态增长的栈
typedef int STDataType;
typedef struct Stack
{
	STDataType* a;
	int top;		// 栈顶
	int capacity;  // 容量 
}Stack;

// 初始化栈 
void StackInit(Stack* ps)
{
	assert(ps);
	ps->a = NULL;
	ps->top = 0;//top指向栈顶的下一个位置,对top的操作需要是:先使用后++
	ps->capacity = 0;
}

// 入栈 
void StackPush(Stack* ps, STDataType data)
{
	assert(ps);
	if (ps->top == ps->capacity)
	{
		int newcapacity = ps->capacity == 0 ? 5 : (ps->capacity) * 2;
		STDataType* tmp = (STDataType*)realloc(ps->a, sizeof(STDataType) * newcapacity);
		if (tmp == NULL)
		{
			perror("realloc:");
			return;
		}
		ps->a = tmp;
		ps->capacity = newcapacity;
	}
	ps->a[ps->top] = data;
	ps->top++;
}

// 出栈 
void StackPop(Stack* ps)
{
	assert(ps);
	assert(!StackEmpty(ps));
	ps->top--;
}

// 获取栈顶元素 
STDataType StackTop(Stack* ps)
{
	assert(ps);
	assert(!StackEmpty(ps));
	return ps->a[ps->top - 1];
}

// 获取栈中有效元素个数 
int StackSize(Stack* ps)
{
	assert(ps);
	return ps->top;
}

// 检测栈是否为空,如果为空返回非零结果,如果不为空返回0 
int StackEmpty(Stack* ps)
{
	assert(ps);
	return ps->top == 0;
}

// 销毁栈 
void StackDestroy(Stack* ps)
{
	assert(ps);
	free(ps->a);
	ps->a = NULL;
	ps->top = 0;
	ps->capacity = 0;
}

二、队列

1.队列的概念及结构

1.1队列的概念

        不同于栈的概念,队列只允许在其一端进行插入数据操作,在另一端进行删除数据操作。进行插入数据操作的一端是队尾,进行删除数据操作的一端是队头。队列是一种特殊的线性表,遵循先进先出的原则。

1.2队列的结构示意图

栈和队列篇_第2张图片

2.队列的实现

2.1队列的结构

        队列的实现一般使用链表的结构更优:

代码:

// 队列成员节点结构
typedef int QDataType;
typedef struct QListNode
{
	struct QListNode* next;
	QDataType data;
}QNode;

// 队列的结构 
typedef struct Queue
{
	QNode* front;
	QNode* rear;
	int size;
}Queue;

简图:

栈和队列篇_第3张图片

2.2队尾入队列

代码:

// 队尾入队列 
void QueuePush(Queue* q, QDataType data)
{
	assert(q);
	
	QNode* NewNode = (QNode*)malloc(sizeof(QNode));
	if (NewNode == NULL)
	{
		perror("malloc:");
		return;
	}
	NewNode->data = data;
	NewNode->next = NULL;
	if (q->size == 0)
	{
		q->front = q->rear = NewNode;
	}
	else
	{
		q->rear->next = NewNode;
		q->rear = q->rear->next;
	}
	q->size++;
}

简图:

栈和队列篇_第4张图片

2.3队头出队列

代码:

// 队头出队列 
void QueuePop(Queue* q)
{
	assert(q);
	//assert(!QueueEmpty(q));
	if (q->front ==q->rear)
	{
		if (q->front == NULL)
		{
			return;
		}
		else
		{
			free(q->front);
			q->front = q->rear = NULL;
		}
	}
	else
	{
		QNode* Tmp = q->front;
		q->front = Tmp->next;
		free(Tmp);
		Tmp = NULL;
	}
	q->size--;
}

简图:

栈和队列篇_第5张图片

2.4队列的代码实现

#pragma once
#include
#include
#include

// 链式结构:表示队列成员节点
typedef int QDataType;
typedef struct QListNode
{
	struct QListNode* next;
	QDataType data;
}QNode;

// 队列的结构 
typedef struct Queue
{
	QNode* front;
	QNode* rear;
	int size;
}Queue;

// 初始化队列 
void QueueInit(Queue* q)
{
	assert(q);
	q->front = q->rear = NULL;
	q->size = 0;
}

// 队尾入队列 
void QueuePush(Queue* q, QDataType data)
{
	assert(q);
	
	QNode* NewNode = (QNode*)malloc(sizeof(QNode));
	if (NewNode == NULL)
	{
		perror("malloc:");
		return;
	}
	NewNode->data = data;
	NewNode->next = NULL;
	if (q->size == 0)
	{
		q->front = q->rear = NewNode;
	}
	else
	{
		q->rear->next = NewNode;
		q->rear = q->rear->next;
	}
	q->size++;
}

// 队头出队列 
void QueuePop(Queue* q)
{
	assert(q);
	//assert(!QueueEmpty(q));
	if (q->front ==q->rear)
	{
		if (q->front == NULL)
		{
			return;
		}
		else
		{
			free(q->front);
			q->front = q->rear = NULL;
		}
	}
	else
	{
		QNode* Tmp = q->front;
		q->front = Tmp->next;
		free(Tmp);
		Tmp = NULL;
	}
	q->size--;
}

// 获取队列头部元素 
QDataType QueueFront(Queue* q)
{
	assert(q);
	assert(!QueueEmpty(q));
	return q->front->data;
}

// 获取队列队尾元素 
QDataType QueueBack(Queue* q)
{
	assert(q);
	assert(!QueueEmpty(q));
	return q->rear->data;
}

// 获取队列中有效元素个数 
int QueueSize(Queue* q)
{
	assert(q);
	return q->size;
}

// 检测队列是否为空,如果为空返回非零结果,如果非空返回0 
int QueueEmpty(Queue* q)
{
	assert(q);
	return q->size == 0 ? 1 : 0;
}

// 销毁队列 
void QueueDestroy(Queue* q)
{
	assert(q);
    while(!QueueEmpty(q))
    {
        QueuePop(q);
    }
}

你可能感兴趣的:(数据结构,c语言)