Spring Boot 中集成 Lucence

2.1 依赖导入

首先需要导入 Lucene 的依赖,它的依赖有好几个,如下:



	org.apache.lucene
	lucene-core
	5.3.1

 


	org.apache.lucene
	lucene-queryparser
	5.3.1

 


	org.apache.lucene
	lucene-analyzers-common
	5.3.1

 


	org.apache.lucene
	lucene-highlighter
	5.3.1

 


	org.apache.lucene
	lucene-analyzers-smartcn
	5.3.1

最后一个依赖是用来支持中文分词的,因为默认是支持英文的。那个高亮的分词依赖是最后我要做一个搜索,然后将搜到的内容高亮显示,模拟当前互联网上的做法,大家可以运用到实际项目中去。

2.2 快速入门


根据上文的分析,全文检索有两个步骤,先建立索引,再检索。所以为了测试这个过程,我新建两个 java 类,一个用来建立索引的,另一个用来检索。

2.2.1 建立索引

我们自己弄几个文件,放到 D:\lucene\data 目录下,新建一个 Indexer 类来实现建立索引功能。首先在构造方法中初始化标准分词器和写索引实例

public class Indexer {
 
    /**
     * 写索引实例
     */
    private IndexWriter writer;
 
    /**
     * 构造方法,实例化IndexWriter
     * @param indexDir
     * @throws Exception
     */
    public Indexer(String indexDir) throws Exception {
        Directory dir = FSDirectory.open(Paths.get(indexDir));
        //标准分词器,会自动去掉空格啊,is a the等单词
        Analyzer analyzer = new StandardAnalyzer();
        //将标准分词器配到写索引的配置中
        IndexWriterConfig config = new IndexWriterConfig(analyzer);
        //实例化写索引对象
        writer = new IndexWriter(dir, config);
    }
}

在构造放发中传一个存放索引的文件夹路径,然后构建标准分词器(这是英文的),再使用标准分词器来实例化写索引对象。

/**
 * 索引指定目录下的所有文件
 * @param dataDir
 * @return
 * @throws Exception
 */
public int indexAll(String dataDir) throws Exception {
    // 获取该路径下的所有文件
    File[] files = new File(dataDir).listFiles();
    if (null != files) {
        for (File file : files) {
            //调用下面的indexFile方法,对每个文件进行索引
            indexFile(file);
        }
    }
    //返回索引的文件数
    return writer.numDocs();
}
 
/**
 * 索引指定的文件
 * @param file
 * @throws Exception
 */
private void indexFile(File file) throws Exception {
    System.out.println("索引文件的路径:" + file.getCanonicalPath());
    //调用下面的getDocument方法,获取该文件的document
    Document doc = getDocument(file);
    //将doc添加到索引中
    writer.addDocument(doc);
}
 
/**
 * 获取文档,文档里再设置每个字段,就类似于数据库中的一行记录
 * @param file
 * @return
 * @throws Exception
 */
private Document getDocument(File file) throws Exception {
    Document doc = new Document();
    //开始添加字段
    //添加内容
    doc.add(new TextField("contents", new FileReader(file)));
    //添加文件名,并把这个字段存到索引文件里
    doc.add(new TextField("fileName", file.getName(), Field.Store.YES));
    //添加文件路径
    doc.add(new TextField("fullPath", file.getCanonicalPath(), Field.Store.YES));
    return doc;
}

在该类中写一个 main 方法测试一下:

public static void main(String[] args) {
        //索引保存到的路径
        String indexDir = "D:\\lucene";
        //需要索引的文件数据存放的目录
        String dataDir = "D:\\lucene\\data";
        Indexer indexer = null;
        int indexedNum = 0;
        //记录索引开始时间
        long startTime = System.currentTimeMillis();
        try {
            // 开始构建索引
            indexer = new Indexer(indexDir);
            indexedNum = indexer.indexAll(dataDir);
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            try {
                if (null != indexer) {
                    indexer.close();
                }
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
        //记录索引结束时间
        long endTime = System.currentTimeMillis();
        System.out.println("索引耗时" + (endTime - startTime) + "毫秒");
        System.out.println("共索引了" + indexedNum + "个文件");
    }

两个 tomcat 相关的文件放到 D:\lucene\data 下了,执行完之后,看到控制台输出:

索引文件的路径:D:\lucene\data\catalina.properties
索引文件的路径:D:\lucene\data\logging.properties
索引耗时882毫秒
共索引了2个文件

然后我们去 D:\lucene\ 目录下可以看到一些索引文件,这些文件不能删除,删除了就需要重新构建索引,否则没了索引,就无法去检索内容了。

2.2.2 检索内容

上面把这两个文件的索引建立好了,接下来我们就可以写检索程序了,在这两个文件中查找特定的词。

public class Searcher {
 
    public static void search(String indexDir, String q) throws Exception {
 
        //获取要查询的路径,也就是索引所在的位置
        Directory dir = FSDirectory.open(Paths.get(indexDir));
        IndexReader reader = DirectoryReader.open(dir);
        //构建IndexSearcher
        IndexSearcher searcher = new IndexSearcher(reader);
        //标准分词器,会自动去掉空格啊,is a the等单词
        Analyzer analyzer = new StandardAnalyzer();
        //查询解析器
        QueryParser parser = new QueryParser("contents", analyzer);
        //通过解析要查询的String,获取查询对象,q为传进来的待查的字符串
        Query query = parser.parse(q);
 
        //记录索引开始时间
        long startTime = System.currentTimeMillis();
        //开始查询,查询前10条数据,将记录保存在docs中
        TopDocs docs = searcher.search(query, 10);
        //记录索引结束时间
        long endTime = System.currentTimeMillis();
        System.out.println("匹配" + q + "共耗时" + (endTime-startTime) + "毫秒");
        System.out.println("查询到" + docs.totalHits + "条记录");
 
        //取出每条查询结果
        for(ScoreDoc scoreDoc : docs.scoreDocs) {
            //scoreDoc.doc相当于docID,根据这个docID来获取文档
            Document doc = searcher.doc(scoreDoc.doc);
            //fullPath是刚刚建立索引的时候我们定义的一个字段,表示路径。也可以取其他的内容,只要我们在建立索引时有定义即可。
            System.out.println(doc.get("fullPath"));
        }
        reader.close();
    }
}

ok,这样我们检索的代码就写完了,每一步解释我写在代码中的注释上了,下面写个 main 方法来测试一下:

public static void main(String[] args) {
    String indexDir = "D:\\lucene";
    //查询这个字符串
    String q = "security";
    try {
        search(indexDir, q);
    } catch (Exception e) {
        e.printStackTrace();
    }
}

查一下 security 这个字符串,执行一下看控制台打印的结果:

匹配security共耗时23毫秒
查询到1条记录
D:\lucene\data\catalina.properties

可以看出,耗时了23毫秒在两个文件中找到了 security 这个字符串,并输出了文件的名称。上面的代码我写的很详细,这个代码已经比较全了,可以用在生产环境上。

2.3 中文分词检索高亮实战


上文已经写了建立索引和检索的代码,但是在实际项目中,我们往往是结合页面做一些查询结果的展示,比如我要查某个关键字,查到了之后,将相关的信息点展示出来,并将查询的关键字高亮等等。这种需求在实际项目中非常常见,而且大多数网站中都会有这种效果。所以这一小节我们就使用 Lucene 来实现这种效果。

2.3.1 中文分词

我们新建一个 ChineseIndexer 类来建立中文索引,建立过程和英文索引一样的,不同的地方在于使用的是中文分词器。除此之外,这里我们不用通过读取文件去建立索引,我们模拟一下用字符串来建立,因为在实际项目中,绝大部分情况是获取到一些文本字符串,然后根据一些关键字去查询相关内容等等。代码如下:
 

public class ChineseIndexer {
 
    /**
     * 存放索引的位置
     */
    private Directory dir;
 
    //准备一下用来测试的数据
    //用来标识文档
    private Integer ids[] = {1, 2, 3};
    private String citys[] = {"上海", "南京", "青岛"};
    private String descs[] = {
            "上海是个繁华的城市。",
            "南京是一个文化的城市南京,简称宁,是江苏省会,地处中国东部地区,长江下游,濒江近海。全市下辖11个区,总面积6597平方公里,2013年建成区面积752.83平方公里,常住人口818.78万,其中城镇人口659.1万人。[1-4] “江南佳丽地,金陵帝王州”,南京拥有着6000多年文明史、近2600年建城史和近500年的建都史,是中国四大古都之一,有“六朝古都”、“十朝都会”之称,是中华文明的重要发祥地,历史上曾数次庇佑华夏之正朔,长期是中国南方的政治、经济、文化中心,拥有厚重的文化底蕴和丰富的历史遗存。[5-7] 南京是国家重要的科教中心,自古以来就是一座崇文重教的城市,有“天下文枢”、“东南第一学”的美誉。截至2013年,南京有高等院校75所,其中211高校8所,仅次于北京上海;国家重点实验室25所、国家重点学科169个、两院院士83人,均居中国第三。[8-10] 。",
            "青岛是一个美丽的城市。"
    };
 
    /**
     * 生成索引
     * @param indexDir
     * @throws Exception
     */
    public void index(String indexDir) throws Exception {
        dir = FSDirectory.open(Paths.get(indexDir));
        // 先调用 getWriter 获取IndexWriter对象
        IndexWriter writer = getWriter();
        for(int i = 0; i < ids.length; i++) {
            Document doc = new Document();
            // 把上面的数据都生成索引,分别用id、city和desc来标识
            doc.add(new IntField("id", ids[i], Field.Store.YES));
            doc.add(new StringField("city", citys[i], Field.Store.YES));
            doc.add(new TextField("desc", descs[i], Field.Store.YES));
            //添加文档
            writer.addDocument(doc);
        }
        //close了才真正写到文档中
        writer.close();
    }
 
    /**
     * 获取IndexWriter实例
     * @return
     * @throws Exception
     */
    private IndexWriter getWriter() throws Exception {
        //使用中文分词器
        SmartChineseAnalyzer analyzer = new SmartChineseAnalyzer();
        //将中文分词器配到写索引的配置中
        IndexWriterConfig config = new IndexWriterConfig(analyzer);
        //实例化写索引对象
        IndexWriter writer = new IndexWriter(dir, config);
        return writer;
    }
 
    public static void main(String[] args) throws Exception {
        new ChineseIndexer().index("D:\\lucene2");
    }
}

这里我们用 id、city、desc 分别代表 id、城市名称和城市描述,用他们作为关键字来建立索引,后面我们获取内容的时候,主要来获取城市描述。南京的描述我故意写的长一点,因为下文检索的时候,根据不同的关键字会检索到不同部分的信息,有个权重的概念在里面。
然后执行一下 main 方法,将索引保存到 D:\lucene2\ 中。

2.3.2 中文分词查询

中文分词查询代码逻辑和默认的查询差不多,有一些区别在于,我们需要将查询出来的关键字标红加粗等需要处理,需要计算出一个得分片段,这是什么意思呢?比如我搜索 “南京文化” 跟搜索 “南京文明”,这两个搜索结果应该根据关键字出现的位置,返回的结果不一样才对,这在下文会测试。我们先看一下代码和注释:
 

public class ChineseSearch {
 
    private static final Logger logger = LoggerFactory.getLogger(ChineseSearch.class);
 
    public static List search(String indexDir, String q) throws Exception {
 
        //获取要查询的路径,也就是索引所在的位置
        Directory dir = FSDirectory.open(Paths.get(indexDir));
        IndexReader reader = DirectoryReader.open(dir);
        IndexSearcher searcher = new IndexSearcher(reader);
        //使用中文分词器
        SmartChineseAnalyzer analyzer = new SmartChineseAnalyzer();
        //由中文分词器初始化查询解析器
        QueryParser parser = new QueryParser("desc", analyzer);
        //通过解析要查询的String,获取查询对象
        Query query = parser.parse(q);
 
        //记录索引开始时间
        long startTime = System.currentTimeMillis();
        //开始查询,查询前10条数据,将记录保存在docs中
        TopDocs docs = searcher.search(query, 10);
        //记录索引结束时间
        long endTime = System.currentTimeMillis();
        logger.info("匹配{}共耗时{}毫秒", q, (endTime - startTime));
        logger.info("查询到{}条记录", docs.totalHits);
 
        //如果不指定参数的话,默认是加粗,即
        SimpleHTMLFormatter simpleHTMLFormatter = new SimpleHTMLFormatter("","");
        //根据查询对象计算得分,会初始化一个查询结果最高的得分
        QueryScorer scorer = new QueryScorer(query);
        //根据这个得分计算出一个片段
        Fragmenter fragmenter = new SimpleSpanFragmenter(scorer);
        //将这个片段中的关键字用上面初始化好的高亮格式高亮
        Highlighter highlighter = new Highlighter(simpleHTMLFormatter, scorer);
        //设置一下要显示的片段
        highlighter.setTextFragmenter(fragmenter);
 
        //取出每条查询结果
        List list = new ArrayList<>();
        for(ScoreDoc scoreDoc : docs.scoreDocs) {
            //scoreDoc.doc相当于docID,根据这个docID来获取文档
            Document doc = searcher.doc(scoreDoc.doc);
            logger.info("city:{}", doc.get("city"));
            logger.info("desc:{}", doc.get("desc"));
            String desc = doc.get("desc");
 
            //显示高亮
            if(desc != null) {
                TokenStream tokenStream = analyzer.tokenStream("desc", new StringReader(desc));
                String summary = highlighter.getBestFragment(tokenStream, desc);
                logger.info("高亮后的desc:{}", summary);
                list.add(summary);
            }
        }
        reader.close();
        return list;
    }
}

每一步的注释我写的很详细,在这就不赘述了。接下来我们来测试一下效果。

2.3.3 测试一下

这里我们使用 thymeleaf 来写个简单的页面来展示获取到的数据,并高亮展示。在 controller 中我们指定索引的目录和需要查询的字符串,如下:

@Controller
@RequestMapping("/lucene")
public class IndexController {
 
    @GetMapping("/test")
    public String test(Model model) {
        // 索引所在的目录
        String indexDir = "D:\\lucene2";
        // 要查询的字符
//        String q = "南京文明";
        String q = "南京文化";
        try {
            List list = ChineseSearch.search(indexDir, q);
            model.addAttribute("list", list);
        } catch (Exception e) {
            e.printStackTrace();
        }
        return "result";
    }
}

直接返回到 result.html 页面,该页面主要来展示一下 model 中的数据即可。




    
    Title


Spring Boot 中集成 Lucence_第1张图片

 

你可能感兴趣的:(Spring,Boot,spring,boot,java,lucene)