【Day-29慢就是快】代码随想录-二叉树-周末总结

周一


学习对称二叉树的判别方法。

本质是比较两棵树(根节点的左右子树),遍历两个树并比较内侧和外侧的节点是否相等。

一棵树左右中遍历,一棵树右左中遍历。

递归法(熟悉)

//递归法
class Solution {
public:
    bool compare(TreeNode* left, TreeNode* right) {
        // 首先排除空节点的情况
        if (left == NULL && right != NULL) return false;
        else if (left != NULL && right == NULL) return false;
        else if (left == NULL && right == NULL) return true;
        // 排除了空节点,再排除数值不相同的情况
        else if (left->val != right->val) return false;

        // 此时就是:左右节点都不为空,且数值相同的情况
        // 此时才做递归,做下一层的判断
        bool outside = compare(left->left, right->right);   // 左子树:左、 右子树:右
        bool inside = compare(left->right, right->left);    // 左子树:右、 右子树:左
        bool isSame = outside && inside;                    // 左子树:中、 右子树:中 (逻辑处理)
        return isSame;

    }
    bool isSymmetric(TreeNode* root) {
        if (root == NULL) return true;
        return compare(root->left, root->right);
    }
};

我们可以首先根据左右子树是否为空,排除掉简单的集中情况。

对于左右子树都不为空,再单独进行节点相等判断。

在迭代法中:

我们借助队列,判断节点是否相等。需要注意的是这不是层序遍历,而且仅仅通过一个容器来成对的存放我们要比较的元素,认识到这一点之后就发现:用队列,用栈,甚至用数组,都是可以的。

class Solution {
public:
    bool isSymmetric(TreeNode* root) {
        if (root == NULL) return true;
        queue que;
        que.push(root->left);   // 将左子树头结点加入队列
        que.push(root->right);  // 将右子树头结点加入队列
        
        while (!que.empty()) {  // 接下来就要判断这两个树是否相互翻转
            TreeNode* leftNode = que.front(); que.pop();
            TreeNode* rightNode = que.front(); que.pop();
            if (!leftNode && !rightNode) {  // 左节点为空、右节点为空,此时说明是对称的
                continue;
            }

            // 左右一个节点不为空,或者都不为空但数值不相同,返回false
            if ((!leftNode || !rightNode || (leftNode->val != rightNode->val))) {
                return false;
            }
            que.push(leftNode->left);   // 加入左节点左孩子
            que.push(rightNode->right); // 加入右节点右孩子
            que.push(leftNode->right);  // 加入左节点右孩子
            que.push(rightNode->left);  // 加入右节点左孩子
        }
        return true;
    }
};

周二


求二叉树的最大深度。

前序遍历求深度,后序遍历求高度。而根节点的高度就是最大深度。

 使用递归法,按照后序遍历求根节点的高度:(熟悉)

class solution {
public:
    int getdepth(TreeNode* node) {
        if (node == NULL) return 0;
        int leftdepth = getdepth(node->left);       // 左
        int rightdepth = getdepth(node->right);     // 右
        int depth = 1 + max(leftdepth, rightdepth); // 中
        return depth;
    }
    int maxDepth(TreeNode* root) {
        return getdepth(root);
    }
};

如果使用前序遍历,可以体现出深度回溯的过程:

class solution {
public:
    int result;
    void getdepth(TreeNode* node, int depth) {
        result = depth > result ? depth : result; // 中

        if (node->left == NULL && node->right == NULL) return ;

        if (node->left) { // 左
            depth++;    // 深度+1
            getdepth(node->left, depth);
            depth--;    // 回溯,深度-1
        }
        if (node->right) { // 右
            depth++;    // 深度+1
            getdepth(node->right, depth);
            depth--;    // 回溯,深度-1
        }
        return ;
    }
    int maxDepth(TreeNode* root) {
        result = 0;
        if (root == NULL) return result;
        getdepth(root, 1);
        return result;
    }
};

使用迭代法,层序遍历,最大深度就是二叉树的层数。(熟悉)

class solution {
public:
    int maxDepth(TreeNode* root) {
        if (root == NULL) return 0;
        int depth = 0;
        queue que;
        que.push(root);
        while(!que.empty()) {
            int size = que.size();
            depth++; // 记录深度
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
        }
        return depth;
    }
};

周三


求二叉树最小深度。根节点到最近叶子节点的最短路径的节点数量。

特别注意是叶子节点,遇到左右孩子不为空的情况单独判断。

下面也是后续遍历的方式。

class Solution {
public:
    int getDepth(TreeNode* node) {
        if (node == NULL) return 0;
        int leftDepth = getDepth(node->left);           // 左
        int rightDepth = getDepth(node->right);         // 右
                                                        // 中
        // 当一个左子树为空,右不为空,这时并不是最低点
        if (node->left == NULL && node->right != NULL) { 
            return 1 + rightDepth;
        }   
        // 当一个右子树为空,左不为空,这时并不是最低点
        if (node->left != NULL && node->right == NULL) { 
            return 1 + leftDepth;
        }
        int result = 1 + min(leftDepth, rightDepth);
        return result;
    }

    int minDepth(TreeNode* root) {
        return getDepth(root);
    }
};

前序遍历:

class Solution {
private:
    int result;
    void getdepth(TreeNode* node, int depth) {
        // 函数递归终止条件
        if (root == nullptr) {
            return;
        }
        // 中,处理逻辑:判断是不是叶子结点
        if (root -> left == nullptr && root->right == nullptr) {
            res = min(res, depth);
        }
        if (node->left) { // 左
            getdepth(node->left, depth + 1);
        }
        if (node->right) { // 右
            getdepth(node->right, depth + 1);
        }
        return ;
    }

public:
    int minDepth(TreeNode* root) {
        if (root == nullptr) {
            return 0;
        }
        result = INT_MAX;
        getdepth(root, 1);
        return result;
    }
};

迭代法:层序遍历

当左右孩子都为空时,遍历到最低点。

class Solution {
public:

    int minDepth(TreeNode* root) {
        if (root == NULL) return 0;
        int depth = 0;
        queue que;
        que.push(root);
        while(!que.empty()) {
            int size = que.size();
            depth++; // 记录最小深度
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
                if (!node->left && !node->right) { // 当左右孩子都为空的时候,说明是最低点的一层了,退出
                    return depth;
                }
            }
        }
        return depth;
    }
};

周四

求二叉树的节点数量。

对于普通二叉树,递归写法为后序遍历。迭代法使用层序遍历记录节点数量。

//递归法
class Solution {
private:
    int getNodesNum(TreeNode* cur) {
        if (cur == NULL) return 0;
        int leftNum = getNodesNum(cur->left);      // 左
        int rightNum = getNodesNum(cur->right);    // 右
        int treeNum = leftNum + rightNum + 1;      // 中
        return treeNum;
    }
public:
    int countNodes(TreeNode* root) {
        return getNodesNum(root);
    }
};
//迭代法
class Solution {
public:
    int countNodes(TreeNode* root) {
        queue que;
        if (root != NULL) que.push(root);
        int result = 0;
        while (!que.empty()) {
            int size = que.size();
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                result++;   // 记录节点数量
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
            }
        }
        return result;
    }
};

若为完全二叉树:

class Solution {
public:
    int countNodes(TreeNode* root) {
        if (root == nullptr) return 0;
        TreeNode* left = root->left;
        TreeNode* right = root->right;
        int leftDepth = 0, rightDepth = 0; // 这里初始为0是有目的的,为了下面求指数方便
        while (left) {  // 求左子树深度
            left = left->left;
            leftDepth++;
        }
        while (right) { // 求右子树深度
            right = right->right;
            rightDepth++;
        }
        if (leftDepth == rightDepth) {
            return (2 << leftDepth) - 1; // 注意(2<<1) 相当于2^2,所以leftDepth初始为0
        }
        return countNodes(root->left) + countNodes(root->right) + 1;
    }
};

周五

平衡二叉树

递归、后续遍历方法。

class Solution {
public:
    // 返回以该节点为根节点的二叉树的高度,如果不是平衡二叉树了则返回-1
    int getHeight(TreeNode* node) {
        if (node == NULL) {
            return 0;
        }
        int leftHeight = getHeight(node->left);
        if (leftHeight == -1) return -1;
        int rightHeight = getHeight(node->right);
        if (rightHeight == -1) return -1;
        return abs(leftHeight - rightHeight) > 1 ? -1 : 1 + max(leftHeight, rightHeight);
    }
    bool isBalanced(TreeNode* root) {
        return getHeight(root) == -1 ? false : true;
    }
};

周六


二叉树的所有路径。

正式结合了递归和回溯。

class Solution {
private:

    void traversal(TreeNode* cur, vector& path, vector& result) {
        path.push_back(cur->val); // 中,中为什么写在这里,因为最后一个节点也要加入到path中 
        // 这才到了叶子节点
        if (cur->left == NULL && cur->right == NULL) {
            string sPath;
            for (int i = 0; i < path.size() - 1; i++) {
                sPath += to_string(path[i]);
                sPath += "->";
            }
            sPath += to_string(path[path.size() - 1]);
            result.push_back(sPath);
            return;
        }
        if (cur->left) { // 左 
            traversal(cur->left, path, result);
            path.pop_back(); // 回溯
        }
        if (cur->right) { // 右
            traversal(cur->right, path, result);
            path.pop_back(); // 回溯
        }
    }

public:
    vector binaryTreePaths(TreeNode* root) {
        vector result;
        vector path;
        if (root == NULL) return result;
        traversal(root, path, result);
        return result;
    }
};

你可能感兴趣的:(c++,代码随想录,算法)