网络编程——多线程编程

文章目录

  • 目的
  • 内容
  • 源代码及结果
    • (1)Linux下的线程同步
      • (1.1)编程使用互斥量实现线程同步;
      • (1.2)编程使用信号量实现线程同步,要求实现以下功能:“线程A从用户输入得到值后存入全局变量num,此时线程B将取走该值并累加。该过程共进行5次,完成后输出总和并退出程序”;
      • (1.3) 在(1.2)的基础上增加一个线程,用于求和之后计算所有数的平均值。
      • (1.4)用多线程并发方式实现一个群聊程序,包括服务器端和客户端。
      • (1.5)利用多线程技术实现回声服务器端,但要让所有线程共享保存客户端消息的内存空间(char数组)。
    • (2)Windows下的线程同步
      • (2.1)编程使用临界区对象实现线程同步;
      • (2.2)编程使用互斥量实现线程同步;
      • (2.3)编程使用信号量实现线程同步,要求实现以下功能:“线程A从用户输入得到值后存入全局变量num,此时线程B将取走该值并累加。该过程共进行5次,完成后输出总和并退出程序”;
      • (2.4)在第(2.3)的基础上增加一个线程,用于求和之后计算所有数的平均值。
      • (2.6)用多线程并发方式实现一个群聊程序,包括服务器端和客户端。

目的

(1) 理解线程和进程的联系和区别;
(2) 掌握Linux下和Windows下创建线程的方法;
(3) 掌握Linux下和Windows下线程同步的方法;
(4) 使用多线程机制实现Linux下和Windows下服务器编程。

内容

(1)Linux下的线程同步
(1.1)编程使用互斥量实现线程同步;
(1.2)编程使用信号量实现线程同步,要求实现以下功能:“线程A从用户输入得到值后存入全局变量num,此时线程B将取走该值并累加。该过程共进行5次,完成后输出总和并退出程序”;
(1.3) 在(1.2)的基础上增加一个线程,用于求和之后计算所有数的平均值。
(1.4)用多线程并发方式实现一个群聊程序,包括服务器端和客户端。
(1.5)利用多线程技术实现回声服务器端,但要让所有线程共享保存客户端消息的内存空间(char数组)。
(2)Windows下的线程同步
(2.1)编程使用临界区对象实现线程同步;
(2.2)编程使用互斥量实现线程同步;
(2.3)编程使用信号量实现线程同步,要求实现以下功能:“线程A从用户输入得到值后存入全局变量num,此时线程B将取走该值并累加。该过程共进行5次,完成后输出总和并退出程序”;
(2.4)在第(2.3)的基础上增加一个线程,用于求和之后计算所有数的平均值。
(2.5)编程使用事件内核对象实现线程同步,要求实现以下功能:分别统计用户输入的字符串中’A’字符和非’A’字符的个数;
(2.6)用多线程并发方式实现一个群聊程序,包括服务器端和客户端。

源代码及结果

(1)Linux下的线程同步

(1.1)编程使用互斥量实现线程同步;

#include 
#include 
#include 
#include 
#define NUM_THREAD	100

void * thread_inc(void * arg);
void * thread_des(void * arg);

long long num=0;
pthread_mutex_t mutex;

int main(int argc, char *argv[]) 
{
	pthread_t thread_id[NUM_THREAD];
	int i;
	
	pthread_mutex_init(&mutex, NULL);

	for(i=0; i<NUM_THREAD; i++)
	{
		if(i%2)
			pthread_create(&(thread_id[i]), NULL, thread_inc, NULL);
		else
			pthread_create(&(thread_id[i]), NULL, thread_des, NULL);	
	}	

	for(i=0; i<NUM_THREAD; i++)
		pthread_join(thread_id[i], NULL);

	printf("result: %lld \n", num);
	pthread_mutex_destroy(&mutex);
	return 0;
}

void * thread_inc(void * arg) 
{
	int i;
	pthread_mutex_lock(&mutex);
	for(i=0; i<500; i++)
		num+=1;
	pthread_mutex_unlock(&mutex);
	return NULL;
}
void * thread_des(void * arg)
{
	int i;
	for(i=0; i<500; i++)
	{
		pthread_mutex_lock(&mutex);
		num-=1;
		pthread_mutex_unlock(&mutex);
	}
	return NULL;
}

测试结果:
在这里插入图片描述

(1.2)编程使用信号量实现线程同步,要求实现以下功能:“线程A从用户输入得到值后存入全局变量num,此时线程B将取走该值并累加。该过程共进行5次,完成后输出总和并退出程序”;

//semaphore.c
#include 
#include 
#include 

void * read(void * arg);
void * accu(void * arg);
static sem_t sem_one;
static sem_t sem_two;
static int num;

int main(int argc, char *argv[])
{
	pthread_t id_t1, id_t2;
	sem_init(&sem_one, 0, 0);
	sem_init(&sem_two, 0, 1);

	pthread_create(&id_t1, NULL, read, NULL);
	pthread_create(&id_t2, NULL, accu, NULL);

	pthread_join(id_t1, NULL);
	pthread_join(id_t2, NULL);

	sem_destroy(&sem_one);
	sem_destroy(&sem_two);
	return 0;
}

void * read(void * arg)
{
	int i;
	for(i=0; i<5; i++)
	{
		fputs("Input num: ", stdout);

		sem_wait(&sem_two);
		scanf("%d", &num);
		sem_post(&sem_one);
	}
	return NULL;	
}
void * accu(void * arg)
{
	int sum=0, i;
	for(i=0; i<5; i++)
	{
		sem_wait(&sem_one);
		sum+=num;
		sem_post(&sem_two);
	}
	printf("Result: %d \n", sum);
	return NULL;
}

测试结果:
网络编程——多线程编程_第1张图片

(1.3) 在(1.2)的基础上增加一个线程,用于求和之后计算所有数的平均值。

//semaphore1.c
#include 
#include 
#include 

void * read(void * arg);
void * accu(void * arg);
void * aver(void * arg);
static sem_t sem_one;
static sem_t sem_two;
static sem_t sem_three;
static int num;
static int sum = 0;

int main(int argc, char *argv[])
{
	pthread_t id_t1, id_t2, id_t3;
	sem_init(&sem_one, 0, 0);
	sem_init(&sem_two, 0, 0);
	sem_init(&sem_three, 0, 1);

	pthread_create(&id_t1, NULL, read, NULL);//读线程
	pthread_create(&id_t2, NULL, accu, NULL);//求和线程
	pthread_create(&id_t3, NULL, aver, NULL);//求平均值线程

	pthread_join(id_t1, NULL);
	pthread_join(id_t2, NULL);
	pthread_join(id_t3, NULL);

	sem_destroy(&sem_one);
	sem_destroy(&sem_two);
	sem_destroy(&sem_three);
	return 0;
}

void * read(void * arg)
{
	int i;
	for(i=0; i<5; i++)
	{
		fputs("Input num: ", stdout);
		sem_wait(&sem_three);
		scanf("%d", &num);
		sem_post(&sem_one);
	}
	return NULL;	
}

void * accu(void * arg)
{
	int i;
	for(i=0; i<5; i++)
	{
		sem_wait(&sem_one);
		sum+=num;
		sem_post(&sem_two);
	}
	printf("Result: %d \n", sum);
	return NULL;
}

void * aver(void * arg)
{
	int i;
	float average=0;
	for(i=0; i<5; i++)
	{
		sem_wait(&sem_two);
		average = sum/(i+1);
		sem_post(&sem_three);
	}
	printf("Average: %.2f\n",average);
	return NULL;
}

测试结果:
网络编程——多线程编程_第2张图片

(1.4)用多线程并发方式实现一个群聊程序,包括服务器端和客户端。

//chat_serv.c
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#define BUF_SIZE 100
#define MAX_CLNT 256

void * handle_clnt(void * arg);
void send_msg(char * msg, int len);
void error_handling(char * msg);

int clnt_cnt=0;
int clnt_socks[MAX_CLNT];
pthread_mutex_t mutx;

int main(int argc, char *argv[])
{
	int serv_sock, clnt_sock;
	struct sockaddr_in serv_adr, clnt_adr;
	int clnt_adr_sz;
	pthread_t t_id;
	if(argc!=2) {
		printf("Usage : %s \n", argv[0]);
		exit(1);
	}
  
	pthread_mutex_init(&mutx, NULL);
	serv_sock=socket(PF_INET, SOCK_STREAM, 0);

	memset(&serv_adr, 0, sizeof(serv_adr));
	serv_adr.sin_family=AF_INET; 
	serv_adr.sin_addr.s_addr=htonl(INADDR_ANY);
	serv_adr.sin_port=htons(atoi(argv[1]));
	
	if(bind(serv_sock, (struct sockaddr*) &serv_adr, sizeof(serv_adr))==-1)
		error_handling("bind() error");
	if(listen(serv_sock, 5)==-1)
		error_handling("listen() error");
	
	while(1)
	{
		clnt_adr_sz=sizeof(clnt_adr);
		clnt_sock=accept(serv_sock, (struct sockaddr*)&clnt_adr,&clnt_adr_sz);
		printf("Connected client %d \n", clnt_sock);
		
		pthread_mutex_lock(&mutx);//在临界区中将客户端套接字加入到客户端套接字数组中
		clnt_socks[clnt_cnt++]=clnt_sock;
		pthread_mutex_unlock(&mutx);
	
		pthread_create(&t_id, NULL, handle_clnt, (void*)&clnt_sock);//创建与该客户端套接字通信的线程
		pthread_detach(t_id);//将子线程与主线程分离,子线程结束后,资源自动回收
	}
	close(serv_sock);
	return 0;
}
	
void * handle_clnt(void * arg)//线程处理函数
{
	int clnt_sock=*((int*)arg);
	int str_len=0, i;
	char msg[BUF_SIZE];
	
	while((str_len=read(clnt_sock, msg, sizeof(msg)))!=0)
		send_msg(msg, str_len);
	
	pthread_mutex_lock(&mutx);
	for(i=0; i<clnt_cnt; i++)   // 移除已断开连接的客户端,此操作在临界区中进行
	{
		if(clnt_sock==clnt_socks[i])
		{
			while(i++<clnt_cnt-1)
				clnt_socks[i]=clnt_socks[i+1];
			break;
		}
	}
	clnt_cnt--;
	pthread_mutex_unlock(&mutx);
	printf("Connected close: %d \n", clnt_sock);
	close(clnt_sock);
	return NULL;
}
void send_msg(char * msg, int len)   // 向所有已连接的客户端发送消息
{
	int i;
	pthread_mutex_lock(&mutx);
	for(i=0; i<clnt_cnt; i++)
		write(clnt_socks[i], msg, len);
	pthread_mutex_unlock(&mutx);
}
void error_handling(char * msg)
{
	fputs(msg, stderr);
	fputc('\n', stderr);
	exit(1);
}
//chat_clnt.c
#include 
#include 
#include  
#include 
#include 
#include 
#include 
	
#define BUF_SIZE 100
#define NAME_SIZE 20
	
void * send_msg(void * arg);
void * recv_msg(void * arg);
void error_handling(char * msg);
	
char name[NAME_SIZE]="[DEFAULT]";
char msg[BUF_SIZE];
	
int main(int argc, char *argv[])
{
	int sock;
	struct sockaddr_in serv_addr;
	pthread_t snd_thread, rcv_thread;
	void * thread_return;
	if(argc!=4) {
		printf("Usage : %s   \n", argv[0]);
		exit(1);
	 }
	
	sprintf(name, "[%s]", argv[3]);
	sock=socket(PF_INET, SOCK_STREAM, 0);
	
	memset(&serv_addr, 0, sizeof(serv_addr));
	serv_addr.sin_family=AF_INET;
	serv_addr.sin_addr.s_addr=inet_addr(argv[1]);
	serv_addr.sin_port=htons(atoi(argv[2]));
	  
	if(connect(sock, (struct sockaddr*)&serv_addr, sizeof(serv_addr))==-1)
		error_handling("connect() error");
	
	pthread_create(&snd_thread, NULL, send_msg, (void*)&sock);//发送消息的子线程
	pthread_create(&rcv_thread, NULL, recv_msg, (void*)&sock);//接收消息的子线程
	pthread_join(snd_thread, &thread_return);//将子线程合入主线程
	pthread_join(rcv_thread, &thread_return);
	close(sock);  
	return 0;
}
	
void * send_msg(void * arg)   // send thread main
{
	int sock=*((int*)arg);
	char name_msg[NAME_SIZE+BUF_SIZE];
	while(1) 
	{
		fgets(msg, BUF_SIZE, stdin);
		if(!strcmp(msg,"q\n")||!strcmp(msg,"Q\n")) 
		{
			close(sock);
			exit(0);
		}
		sprintf(name_msg,"%s %s", name, msg);
		write(sock, name_msg, strlen(name_msg));
	}
	return NULL;
}
	
void * recv_msg(void * arg)   // read thread main
{
	int sock=*((int*)arg);
	char name_msg[NAME_SIZE+BUF_SIZE];
	int str_len;
	while(1)
	{
		str_len=read(sock, name_msg, NAME_SIZE+BUF_SIZE-1);
		if(str_len==-1) 
			return (void*)-1;
		name_msg[str_len]=0;
		fputs(name_msg, stdout);
	}
	return NULL;
}
	
void error_handling(char *msg)
{
	fputs(msg, stderr);
	fputc('\n', stderr);
	exit(1);
}

测试结果:
网络编程——多线程编程_第3张图片
在这里插入图片描述

(1.5)利用多线程技术实现回声服务器端,但要让所有线程共享保存客户端消息的内存空间(char数组)。

//echo_server.c
#include 
#include 
#include 
#include 
#include 
#include 
#include 

#define BUF_SIZE 1024
void error_handling(char *message);
void * handle(void * arg);
void * handle(void * arg);
pthread_mutex_t metux;
char message[BUF_SIZE];

int main(int argc, char *argv[])
{
	int serv_sock, clnt_sock;
	pthread_t id_t;
	
	struct sockaddr_in serv_adr;
	struct sockaddr_in clnt_adr;
	socklen_t clnt_adr_sz;
	
	if(argc!=2) {
		printf("Usage : %s \n", argv[0]);
		exit(1);
	}
	
	serv_sock=socket(PF_INET, SOCK_STREAM, 0);   
	if(serv_sock==-1)
		error_handling("socket() error");
	
	pthread_mutex_init(&metux, NULL);
	memset(&serv_adr, 0, sizeof(serv_adr));
	serv_adr.sin_family=AF_INET;
	serv_adr.sin_addr.s_addr=htonl(INADDR_ANY);
	serv_adr.sin_port=htons(atoi(argv[1]));

	if(bind(serv_sock, (struct sockaddr*)&serv_adr, sizeof(serv_adr))==-1)
		error_handling("bind() error");
	
	if(listen(serv_sock, 5)==-1)
		error_handling("listen() error");
	

	while(1)
	{
		clnt_adr_sz=sizeof(clnt_adr);
		clnt_sock=accept(serv_sock, (struct sockaddr*)&clnt_adr, &clnt_adr_sz);
		if(clnt_sock==-1)
			error_handling("accept() error");
		else
			printf("Connected client %d \n", clnt_sock);
		    pthread_create(&id_t,NULL,handle,(void*)&clnt_sock);
		    pthread_detach(id_t);
	}
	close(serv_sock);
	return 0;
}
void * handle(void * arg)
{
	int sock=*((int*)arg);
	int str_len;
	while(1)
	{
		pthread_mutex_lock(&metux);
		str_len=read(sock,message,BUF_SIZE);
		if(str_len==0)
			break;
		else
			write(sock,message,str_len);
		pthread_mutex_unlock(&metux);
	}
	printf("close client:%d\n",sock);
	close(sock);
	return NULL;
}
void error_handling(char *message)
{
	fputs(message, stderr);
	fputc('\n', stderr);
	exit(1);
}
//echo_client.c
#include 
#include 
#include 
#include 
#include 

#define BUF_SIZE 1024
void error_handling(char *message);

int main(int argc, char *argv[])
{
	int sock;
	char message[BUF_SIZE];
	int str_len;
	struct sockaddr_in serv_adr;

	if(argc!=3) {
		printf("Usage : %s  \n", argv[0]);
		exit(1);
	}
	
	sock=socket(PF_INET, SOCK_STREAM, 0);   
	if(sock==-1)
		error_handling("socket() error");
	
	memset(&serv_adr, 0, sizeof(serv_adr));
	serv_adr.sin_family=AF_INET;
	serv_adr.sin_addr.s_addr=inet_addr(argv[1]);
	serv_adr.sin_port=htons(atoi(argv[2]));
	
	if(connect(sock, (struct sockaddr*)&serv_adr, sizeof(serv_adr))==-1)
		error_handling("connect() error!");
	else
		puts("Connected...........");
	
	while(1) 
	{
		fputs("Input message(Q to quit): ", stdout);
		fgets(message, BUF_SIZE, stdin);
		
		if(!strcmp(message,"q\n") || !strcmp(message,"Q\n"))
			break;

		write(sock, message, strlen(message));
		str_len=read(sock, message, BUF_SIZE-1);
		message[str_len]=0;
		printf("Message from server: %s", message);
	}
	
	close(sock);
	return 0;
}

void error_handling(char *message)
{
	fputs(message, stderr);
	fputc('\n', stderr);
	exit(1);
}

测试结果:
网络编程——多线程编程_第4张图片
网络编程——多线程编程_第5张图片

(2)Windows下的线程同步

(2.1)编程使用临界区对象实现线程同步;

#include 
#include 
#include 

#define NUM_THREAD	2
unsigned WINAPI threadInc(void* arg);
unsigned WINAPI threadDes(void* arg);

long long num = 0;
CRITICAL_SECTION cs;

int main(int argc, char* argv[])
{
	HANDLE tHandles[NUM_THREAD];
	int i;

	InitializeCriticalSection(&cs);//创建CRITICAL_SECTION,相当于临界区的锁
	for (i = 0; i < NUM_THREAD; i++)//创建线程
	{
		if (i % 2)
			tHandles[i] = (HANDLE)_beginthreadex(NULL, 0, threadInc, NULL, 0, NULL);
		else
			tHandles[i] = (HANDLE)_beginthreadex(NULL, 0, threadDes, NULL, 0, NULL);
	}

	WaitForMultipleObjects(NUM_THREAD, tHandles, TRUE, INFINITE);//对内核对象验证signaled
	DeleteCriticalSection(&cs);//销毁
	printf("result: %lld \n", num);
	return 0;
}

unsigned WINAPI threadInc(void* arg)//加法处理函数
{
	int i;

	EnterCriticalSection(&cs);//获取,进入临界区
	for (i = 0; i < 500; i++)
		num += 1;
	LeaveCriticalSection(&cs);//释放

	return 0;
}
unsigned WINAPI threadDes(void* arg)//减法处理函数
{
	int i;

	EnterCriticalSection(&cs);
	for (i = 0; i < 500; i++)
		num -= 1;
	LeaveCriticalSection(&cs);

	return 0;
}

测试结果:
在这里插入图片描述

(2.2)编程使用互斥量实现线程同步;

#include 
#include 
#include 

#define NUM_THREAD	2
unsigned WINAPI threadInc(void* arg);
unsigned WINAPI threadDes(void* arg);

long long num = 0;
HANDLE hMutex;

int main(int argc, char* argv[])
{
	HANDLE tHandles[NUM_THREAD];
	int i;

	hMutex = CreateMutex(NULL, FALSE, NULL);//创建互斥量对象句柄
	for (i = 0; i < NUM_THREAD; i++)//创建线程
	{
		if (i % 2)
			tHandles[i] = (HANDLE)_beginthreadex(NULL, 0, threadInc, NULL, 0, NULL);
		else
			tHandles[i] = (HANDLE)_beginthreadex(NULL, 0, threadDes, NULL, 0, NULL);
	}

	WaitForMultipleObjects(NUM_THREAD, tHandles, TRUE, INFINITE);//对内核对象验证是否为signaled状态
	CloseHandle(hMutex);//销毁内核对象句柄
	printf("result: %lld \n", num);
	return 0;
}

unsigned WINAPI threadInc(void* arg)//加法处理函数
{
	int i;

	WaitForSingleObject(hMutex, INFINITE);//临界区的开始
	for (i = 0; i < 500; i++)
		num += 1;
	ReleaseMutex(hMutex);//临界区结束

	return 0;
}
unsigned WINAPI threadDes(void* arg)//减法处理函数
{
	int i;

	WaitForSingleObject(hMutex, INFINITE);
	for (i = 0; i < 500; i++)
		num -= 1;
	ReleaseMutex(hMutex);

	return 0;
}

测试结果:
在这里插入图片描述

(2.3)编程使用信号量实现线程同步,要求实现以下功能:“线程A从用户输入得到值后存入全局变量num,此时线程B将取走该值并累加。该过程共进行5次,完成后输出总和并退出程序”;

#include 
#include 
#include 

unsigned WINAPI Read(void* arg);
unsigned WINAPI Accu(void* arg);

static HANDLE semOne;
static HANDLE semTwo;
static int num;

int main(int argc, char* argv[])
{
	HANDLE hThread1, hThread2;
	semOne = CreateSemaphore(NULL, 0, 1, NULL);//创建信号量
	semTwo = CreateSemaphore(NULL, 1, 1, NULL);

	hThread1 = (HANDLE)_beginthreadex(NULL, 0, Read, NULL, 0, NULL);//创建线程
	hThread2 = (HANDLE)_beginthreadex(NULL, 0, Accu, NULL, 0, NULL);

	WaitForSingleObject(hThread1, INFINITE);//监听线程是否为signaled状态
	WaitForSingleObject(hThread2, INFINITE);

	CloseHandle(semOne);//关闭线程
	CloseHandle(semTwo);
	return 0;
}

unsigned WINAPI Read(void* arg)//加法处理函数
{
	int i;
	for (i = 0; i < 5; i++)
	{
		fputs("Input num: ", stdout);

		WaitForSingleObject(semTwo, INFINITE);//临界区的开始
		scanf("%d", &num);
		ReleaseSemaphore(semOne, 1, NULL);//临界区结束
	}
	return 0;
}
unsigned WINAPI Accu(void* arg)//减法处理函数
{
	int sum = 0, i;
	for (i = 0; i < 5; i++)
	{
		WaitForSingleObject(semOne, INFINITE);
		sum += num;
		ReleaseSemaphore(semTwo, 1, NULL);
	}
	printf("Result: %d \n", sum);
	return 0;
}

测试结果:
网络编程——多线程编程_第6张图片

(2.4)在第(2.3)的基础上增加一个线程,用于求和之后计算所有数的平均值。

#include 
#include 
#include 

unsigned WINAPI Read(void* arg);
unsigned WINAPI Accu(void* arg);
unsigned WINAPI Aver(void* arg);

static HANDLE semOne;
static HANDLE semTwo;
static HANDLE semThree;
static int num;
static int sum = 0;

int main(int argc, char* argv[])
{
	HANDLE hThread1, hThread2, hThread3;
	semOne = CreateSemaphore(NULL, 0, 1, NULL);
	semTwo = CreateSemaphore(NULL, 0, 1, NULL);
	semThree = CreateSemaphore(NULL, 1, 1, NULL);

	hThread1 = (HANDLE)_beginthreadex(NULL, 0, Read, NULL, 0, NULL);//创建3个线程,分别处理3个函数
	hThread2 = (HANDLE)_beginthreadex(NULL, 0, Accu, NULL, 0, NULL);
	hThread3 = (HANDLE)_beginthreadex(NULL, 0, Aver, NULL, 0, NULL);

	WaitForSingleObject(hThread1, INFINITE);
	WaitForSingleObject(hThread2, INFINITE);
	WaitForSingleObject(hThread3, INFINITE);

	CloseHandle(semOne);
	CloseHandle(semTwo);
	CloseHandle(semThree);
	return 0;
}

unsigned WINAPI Read(void* arg)
{
	int i;
	for (i = 0; i < 5; i++)
	{
		fputs("Input num: ", stdout);

		WaitForSingleObject(semThree, INFINITE);
		scanf("%d", &num);
		ReleaseSemaphore(semOne, 1, NULL);
	}
	return 0;
}
unsigned WINAPI Accu(void* arg)
{
	int i;
	for (i = 0; i < 5; i++)
	{
		WaitForSingleObject(semOne, INFINITE);
		sum += num;
		ReleaseSemaphore(semTwo, 1, NULL);
	}
	printf("Result: %d \n", sum);
	return 0;
}
unsigned WINAPI Aver(void* arg)
{
	int i;
	float average=0;
	for (i = 0; i < 5; i++)
	{
		WaitForSingleObject(semTwo, INFINITE);
		average = (float)sum / (i + 1);
		ReleaseSemaphore(semThree, 1, NULL);
	}
	printf("Average: %.2f \n", average);
	return 0;
}

测试结果:
网络编程——多线程编程_第7张图片

(2.5)编程使用事件内核对象实现线程同步,要求实现以下功能:分别统计用户输入的字符串中’A’字符和非’A’字符的个数;

#include 
#include 
#include  
#define STR_LEN		100

unsigned WINAPI NumberOfA(void* arg);
unsigned WINAPI NumberOfOthers(void* arg);

static char str[STR_LEN];
static HANDLE hEvent;

int main(int argc, char* argv[])
{
	HANDLE  hThread1, hThread2;

	hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);//创建事件的对象句柄
	hThread1 = (HANDLE)_beginthreadex(NULL, 0, NumberOfA, NULL, 0, NULL);//创建线程
	hThread2 = (HANDLE)_beginthreadex(NULL, 0, NumberOfOthers, NULL, 0, NULL);

	fputs("Input string: ", stdout);//输入字符串
	fgets(str, STR_LEN, stdin);
	SetEvent(hEvent); //将状态改为signaled

	WaitForSingleObject(hThread1, INFINITE);
	WaitForSingleObject(hThread2, INFINITE);
	ResetEvent(hEvent);//将状态改为non-signaled
	CloseHandle(hEvent);
	return 0;
}

unsigned WINAPI NumberOfA(void* arg)//处理是'A'字符的函数
{
	int i, cnt = 0;
	WaitForSingleObject(hEvent, INFINITE);//等待signaled状态
	for (i = 0; str[i] != 0; i++)
	{
		if (str[i] == 'A')
			cnt++;
	}
	printf("Num of A: %d \n", cnt);
	return 0;
}
unsigned WINAPI NumberOfOthers(void* arg)//处理不是'A'字符的函数
{
	int i, cnt = 0;
	WaitForSingleObject(hEvent, INFINITE);
	for (i = 0; str[i] != 0; i++)
	{
		if (str[i] != 'A')
			cnt++;
	}
	printf("Num of others: %d \n", cnt - 1);
	return 0;
}

测试结果:
在这里插入图片描述

(2.6)用多线程并发方式实现一个群聊程序,包括服务器端和客户端。

服务端:
#include 
#include 
#include 
#include 
#include  

#define BUF_SIZE 100
#define MAX_CLNT 256

unsigned WINAPI HandleClnt(void* arg);
void SendMsg(char* msg, int len);
void ErrorHandling(char* msg);

int clntCnt = 0;
SOCKET clntSocks[MAX_CLNT];
HANDLE hMutex;

int main(int argc, char* argv[])
{
	WSADATA wsaData;
	SOCKET hServSock, hClntSock;
	SOCKADDR_IN servAdr, clntAdr;
	int clntAdrSz;
	HANDLE  hThread;
	if (argc != 2) {
		printf("Usage : %s \n", argv[0]);
		exit(1);
	}
	if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)
		ErrorHandling("WSAStartup() error!");

	hMutex = CreateMutex(NULL, FALSE, NULL);//创建互斥量对象
	hServSock = socket(PF_INET, SOCK_STREAM, 0);

	memset(&servAdr, 0, sizeof(servAdr));
	servAdr.sin_family = AF_INET;
	servAdr.sin_addr.s_addr = htonl(INADDR_ANY);
	servAdr.sin_port = htons(atoi(argv[1]));

	if (bind(hServSock, (SOCKADDR*)&servAdr, sizeof(servAdr)) == SOCKET_ERROR)
		ErrorHandling("bind() error");
	if (listen(hServSock, 5) == SOCKET_ERROR)
		ErrorHandling("listen() error");

	while (1)
	{
		clntAdrSz = sizeof(clntAdr);
		hClntSock = accept(hServSock, (SOCKADDR*)&clntAdr, &clntAdrSz);

		WaitForSingleObject(hMutex, INFINITE);//等待进入临界区
		clntSocks[clntCnt++] = hClntSock;//将刚连接的客户端套接字加入到套接字数组中
		ReleaseMutex(hMutex);//退出临界区

		hThread =
			(HANDLE)_beginthreadex(NULL, 0, HandleClnt, (void*)&hClntSock, 0, NULL);//创建线程
		printf("Connected client IP: %s \n", inet_ntoa(clntAdr.sin_addr));
	}
	closesocket(hServSock);
	WSACleanup();
	return 0;
}

unsigned WINAPI HandleClnt(void* arg)//处理函数
{
	SOCKET hClntSock = *((SOCKET*)arg);
	int strLen = 0, i;
	char msg[BUF_SIZE];

	while ((strLen = recv(hClntSock, msg, sizeof(msg), 0)) != 0)
		SendMsg(msg, strLen);//向所有已存在的客户端发送消息

	WaitForSingleObject(hMutex, INFINITE);//进入临界区将关闭的套接字移除
	for (i = 0; i < clntCnt; i++)   // remove disconnected client
	{
		if (hClntSock == clntSocks[i])
		{
			while (i++ < clntCnt - 1)
				clntSocks[i] = clntSocks[i + 1];
			break;
		}
	}
	clntCnt--;
	ReleaseMutex(hMutex);
	closesocket(hClntSock);
	return 0;
}
void SendMsg(char* msg, int len)   // send to all发送消息处理函数
{
	int i;
	WaitForSingleObject(hMutex, INFINITE);//进入临界区向客户端发送消息
	for (i = 0; i < clntCnt; i++)
		send(clntSocks[i], msg, len, 0);

	ReleaseMutex(hMutex);
}
void ErrorHandling(char* msg)
{
	fputs(msg, stderr);
	fputc('\n', stderr);
	exit(1);
}
客户端:
#include 
#include 
#include 
#include 
#include  

#define BUF_SIZE 100
#define NAME_SIZE 20

unsigned WINAPI SendMsg(void* arg);
unsigned WINAPI RecvMsg(void* arg);
void ErrorHandling(char* msg);

char name[NAME_SIZE] = "[DEFAULT]";
char msg[BUF_SIZE];

int main(int argc, char* argv[])
{
	WSADATA wsaData;
	SOCKET hSock;
	SOCKADDR_IN servAdr;
	HANDLE hSndThread, hRcvThread;
	if (argc != 4) {
		printf("Usage : %s   \n", argv[0]);
		exit(1);
	}
	if (WSAStartup(MAKEWORD(2, 2), &wsaData) != 0)
		ErrorHandling("WSAStartup() error!");

	sprintf(name, "[%s]", argv[3]);//客户端姓名
	hSock = socket(PF_INET, SOCK_STREAM, 0);

	memset(&servAdr, 0, sizeof(servAdr));
	servAdr.sin_family = AF_INET;
	servAdr.sin_addr.s_addr = inet_addr(argv[1]);
	servAdr.sin_port = htons(atoi(argv[2]));

	if (connect(hSock, (SOCKADDR*)&servAdr, sizeof(servAdr)) == SOCKET_ERROR)
		ErrorHandling("connect() error");

	hSndThread =
		(HANDLE)_beginthreadex(NULL, 0, SendMsg, (void*)&hSock, 0, NULL);//创建发送消息的线程
	hRcvThread =
		(HANDLE)_beginthreadex(NULL, 0, RecvMsg, (void*)&hSock, 0, NULL);//创建接收消息的线程

	WaitForSingleObject(hSndThread, INFINITE);
	WaitForSingleObject(hRcvThread, INFINITE);
	closesocket(hSock);
	WSACleanup();
	return 0;
}

unsigned WINAPI SendMsg(void* arg)   // send thread main发送
{
	SOCKET hSock = *((SOCKET*)arg);
	char nameMsg[NAME_SIZE + BUF_SIZE];
	while (1)
	{
		fgets(msg, BUF_SIZE, stdin);
		if (!strcmp(msg, "q\n") || !strcmp(msg, "Q\n"))
		{
			closesocket(hSock);
			exit(0);
		}
		sprintf(nameMsg, "%s %s", name, msg);
		send(hSock, nameMsg, strlen(nameMsg), 0);
	}
	return 0;
}

unsigned WINAPI RecvMsg(void* arg)   // read thread main接收
{
	int hSock = *((SOCKET*)arg);
	char nameMsg[NAME_SIZE + BUF_SIZE];
	int strLen;
	while (1)
	{
		strLen = recv(hSock, nameMsg, NAME_SIZE + BUF_SIZE - 1, 0);
		if (strLen == -1)
			return -1;
		nameMsg[strLen] = 0;
		fputs(nameMsg, stdout);
	}
	return 0;
}

void ErrorHandling(char* msg)
{
	fputs(msg, stderr);
	fputc('\n', stderr);
	exit(1);
}

测试结果:
网络编程——多线程编程_第8张图片
网络编程——多线程编程_第9张图片
其中对于1.3,需要创建3个信号量,在线程对临界变量进行访问的时候,各信号量的值需要设置好。先读取数据,求和,再求平均数。这样就不会使多个线程对临界区同时操作。
对于1.5,由于存储消息的字符串数组设定成一个共享变量,在某个客户端通信时,其他客户端只能够等待,等该客户端通信完毕释放临界区后,其他客户端才能够与服务器通信。
Windows线程同步比linux线程同步更复杂一点,windows下分为内核模式与用户模式,两种模式工作模式不同。其中,在内核模式的同步中,除了基于互斥量与信号量对象的同步外,还有基于事件对象的同步,对比前两种,该同步方法有很大的不同。
Linux下和Windows的线程对比后,有相同点与不同点,需要结合操作系统下线程同步的原理加以理解与运用。

你可能感兴趣的:(网络编程,网络通信)