Netty—ByteBuf

Netty—ByteBuf

  • 一、组成部分
  • 二、创建ByteBuf
  • 三、写入
  • 四、读取
  • 五、内存释放
  • 六、零拷贝
    • 1、slice
    • 2、duplicate
    • 3、CompositeByteBuf
  • 七、工具类——Unpooled

ByteBuf 是 Netty 中的字节容器,它类似于 Java 中的 ByteBuffer,但是提供了更强大、更灵活的功能。ByteBuf 是一个可扩展的、可读写的字节容器,可以动态地分配和释放内存,支持零拷贝技术,同时具备高效的读写操作和内存管理能力。它具有以下优点:

  • 池化 - 可以重用池中 ByteBuf 实例,更节约内存,减少内存溢出的可能
  • 读写指针分离,不需要像 ByteBuffer 一样切换读写模式
  • 可以自动扩容,ByteBuffer长度固定,一旦分配完成,它的容量不能动态扩展和收缩;
  • 支持链式调用,使用更流畅
  • 很多地方体现零拷贝,例如 slice、duplicate、CompositeByteBuf

一、组成部分

ByteBuf 是 Netty 中的字节容器,它由三个部分组成:底层字节数组、读写指针和容量。

  • 底层字节数组:ByteBuf 中存储数据的底层数据结构,可以是堆内存数组、直接内存数组或者复合数组。
  • 读写指针:ByteBuf 中用于指示读写位置的指针,包括读指针和写指针。读指针表示当前可以读取的数据的起始位置,写指针表示当前可以写入数据的起始位置。在进行读写操作时,读写指针会随着操作的进行而自动移动。
  • 容量:ByteBuf 中存储数据的总容量,包括已经使用的容量和未使用的容量。在创建 ByteBuf 对象时,可以指定初始容量和最大容量,当容量不足时,可以动态地扩展容量。

Netty—ByteBuf_第1张图片

初始读写指针都在 0 位置!

二、创建ByteBuf

ByteBuf 有两种模式:堆模式直接模式。在堆模式下,ByteBuf 的底层字节数组在 JVM 堆内存中分配,而在直接模式下,ByteBuf 的底层字节数组在操作系统的内存中分配,可以提高传输效率。此外,ByteBuf 还提供了池化技术,可以重用已经分配的 ByteBuf 对象,减少内存分配和释放的开销。

// 分配ByteBuf。它是直接缓冲区还是堆缓冲区取决于实际实现。
ByteBuf buffer = ByteBufAllocator.DEFAULT.buffer();
// 创建池化基于堆的 ByteBuf
ByteBuf heapBuffer = ByteBufAllocator.DEFAULT.heapBuffer();
// 创建池化基于直接内存的 ByteBuf
ByteBuf directBuffer = ByteBufAllocator.DEFAULT.directBuffer();
  • 直接内存创建和销毁的代价比较昂贵,但读写性能高(少一次内存复制),适合配合池化功能一起用
  • 直接内存堆 GC 塔里少,因为这部分内存不受 JVM垃圾回收的管理,但也要注意及时主动释放

池化

池化的最大意义在于可以重用 ByteBuf,优点是:

  • 可以重用池中 ByteBuf 实例,并且采用了 jemalloc 类似的内存分配算法提升分配效率。没有池化,则每次都得创建新的 ByteBuf 实例,这个操作对直接内存代价昂贵,就算是对内存,也会增加GC压力。
  • 高并发时,池化功能更加节约内存,减少内存溢出的可能

池化功能是否开启,可以通过系统环境变量来设置:

-Dio.netty.allocator.type={unpooled|pooled}

关于扩容

扩容规则是,

  • 如果写入后数据大小为超过 512,则选择下一个 16 的整数倍,例如写入后大小为 12,则扩容后 capacity 是 16
  • 如果写入后数据大小超过 512,则选择下一个 2^n,例如写入后大小为 513,2^9=512不够了,则扩容后 capacity 是 2^10=1024。
  • 扩容不能超过 max capacity,否则报错

三、写入

// 写入布尔值,并非用一个字节存储,而是使用 01|00 代表 true\|false
public abstract ByteBuf writeBoolean(boolean value);
// 写入byte值
public abstract ByteBuf writeByte(int value);
// 写入 short 值
public abstract ByteBuf writeShort(int value);
// 写入 short 值
public abstract ByteBuf writeShortLE(int value);
// 这个不是java基础类型,算是个特例
public abstract ByteBuf writeMedium(int value);
// 这个不是java基础类型,算是个特例
public abstract ByteBuf writeMediumLE(int value);
// 写入 int 值,Big Endian,即 0x250,写入后 00 00 02 50
public abstract ByteBuf writeInt(int value);
// 写入 int 值,Little Endian,即 0x250,写入后 50 02 00 00
public abstract ByteBuf writeIntLE(int value);
// 写入 long 值
public abstract ByteBuf writeLong(long value);
// 写入 long 值
public abstract ByteBuf writeLongLE(long value);
// 写入 char 值
public abstract ByteBuf writeChar(int value);
// 写入 float 值
public abstract ByteBuf writeFloat(float value);
// 写入 float 值
public ByteBuf writeFloatLE(float value);
// 写入 double 值
public abstract ByteBuf writeDouble(double value);
// 写入 double 值
public ByteBuf writeDoubleLE(double value) {
    return writeLongLE(Double.doubleToRawLongBits(value));
}
// 写入 netty 的 ByteBuf
public abstract ByteBuf writeBytes(ByteBuf src);
// 写入 netty 的 ByteBuf,指定长度
public abstract ByteBuf writeBytes(ByteBuf src, int length);
// 写入 netty 的 ByteBuf,指定启始位置、长度
public abstract ByteBuf writeBytes(ByteBuf src, int srcIndex, int length);
// 写入 byte[]
public abstract ByteBuf writeBytes(byte[] src);
public abstract ByteBuf writeBytes(byte[] src, int srcIndex, int length);
// 写入nio的ByteBuffer
public abstract ByteBuf writeBytes(ByteBuffer src);
// 写入 流
public abstract int writeBytes(InputStream in, int length) throws IOException;
public abstract int writeBytes(ScatteringByteChannel in, int length) throws IOException;
public abstract int writeBytes(FileChannel in, long position, int length) throws IOException;
// 写入字符串
public abstract int writeCharSequence(CharSequence sequence, Charset charset);

注意,返回值是 ByteBuf,意味着可以链式调用~

先写入 4 个字节

buffer.writeBytes(new byte[]{1, 2, 3, 4});
log(buffer);

结果是

read index:0 write index:4 capacity:10
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04                                     |....            |
+--------+-------------------------------------------------+----------------+

再写入一个 int 整数,也是 4 个字节

buffer.writeInt(5);
log(buffer);

结果是

read index:0 write index:8 capacity:10
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 00 00 00 05                         |........        |
+--------+-------------------------------------------------+----------------+

还有一类方法是 set 开头的一系列方法,也可以写入数据,但不会改变写指针位置

四、读取

例如读了 4 次,每次一个字节

System.out.println(buffer.readByte());
System.out.println(buffer.readByte());
System.out.println(buffer.readByte());
System.out.println(buffer.readByte());
log(buffer);

读过的内容,就属于废弃部分了,再读只能读那些尚未读取的部分

1
2
3
4
read index:4 write index:12 capacity:16
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 00 00 05 00 00 00 06                         |........        |
+--------+-------------------------------------------------+----------------+

如果需要重复读取 int 整数 5,怎么办?

可以在 read 前先做个标记 mark

buffer.markReaderIndex();
System.out.println(buffer.readInt());
log(buffer);

结果

5
read index:8 write index:12 capacity:16
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 00 00 06                                     |....            |
+--------+-------------------------------------------------+----------------+

这时要重复读取的话,重置到标记位置 reset

buffer.resetReaderIndex();
log(buffer);

这时

read index:4 write index:12 capacity:16
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 00 00 00 05 00 00 00 06                         |........        |
+--------+-------------------------------------------------+----------------+

还有种办法是采用 get 开头的一系列方法,这些方法不会改变 read index

五、内存释放

由于 Netty 中有堆外内存的 ByteBuf 实现,堆外内存最好是手动来释放,而不是等 GC 垃圾回收。

  • UnpooledHeapByteBuf 使用的是 JVM 内存,只需等 GC 回收内存即可
  • UnpooledDirectByteBuf 使用的就是直接内存了,需要特殊的方法来回收内存
  • PooledByteBuf 和它的子类使用了池化机制,需要更复杂的规则来回收内存

回收内存的源码实现,请关注下面方法的不同实现

protected abstract void deallocate()

Netty 这里采用了引用计数法来控制回收内存,每个 ByteBuf 都实现了 ReferenceCounted 接口

  • 每个 ByteBuf 对象的初始计数为 1
  • 调用 release 方法计数减 1,如果计数为 0,ByteBuf 内存被回收
  • 调用 retain 方法计数加 1,表示调用者没用完之前,其它 handler 即使调用了 release 也不会造成回收
  • 当计数为 0 时,底层内存会被回收,这时即使 ByteBuf 对象还在,其各个方法均无法正常使用

谁来负责 release 呢?

不是我们想象的(一般情况下)

ByteBuf buf = ...
try {
    ...
} finally {
    buf.release();
}

请思考,因为 pipeline 的存在,一般需要将 ByteBuf 传递给下一个 ChannelHandler,如果在 finally 中 release 了,就失去了传递性(当然,如果在这个 ChannelHandler 内这个 ByteBuf 已完成了它的使命,那么便无须再传递)

基本规则是,谁是最后使用者,谁负责 release,详细分析如下

  • 起点,对于 NIO 实现来讲,在 io.netty.channel.nio.AbstractNioByteChannel.NioByteUnsafe#read 方法中首次创建 ByteBuf 放入 pipeline(line 163 pipeline.fireChannelRead(byteBuf))
  • 入站 ByteBuf 处理原则
    • 对原始 ByteBuf 不做处理,调用 ctx.fireChannelRead(msg) 向后传递,这时无须 release
    • 将原始 ByteBuf 转换为其它类型的 Java 对象,这时 ByteBuf 就没用了,必须 release
    • 如果不调用 ctx.fireChannelRead(msg) 向后传递,那么也必须 release
    • 注意各种异常,如果 ByteBuf 没有成功传递到下一个 ChannelHandler,必须 release
    • 假设消息一直向后传,那么 TailContext 会负责释放未处理消息(原始的 ByteBuf)
  • 出站 ByteBuf 处理原则
    • 出站消息最终都会转为 ByteBuf 输出,一直向前传,由 HeadContext flush 后 release
  • 异常处理原则
    • 有时候不清楚 ByteBuf 被引用了多少次,但又必须彻底释放,可以循环调用 release 直到返回 true

TailContext 释放未处理消息逻辑

// io.netty.channel.DefaultChannelPipeline#onUnhandledInboundMessage(java.lang.Object)
protected void onUnhandledInboundMessage(Object msg) {
    try {
        logger.debug(
            "Discarded inbound message {} that reached at the tail of the pipeline. " +
            "Please check your pipeline configuration.", msg);
    } finally {
        ReferenceCountUtil.release(msg);
    }
}

具体代码

// io.netty.util.ReferenceCountUtil#release(java.lang.Object)
public static boolean release(Object msg) {
    if (msg instanceof ReferenceCounted) {
        return ((ReferenceCounted) msg).release();
    }
    return false;
}

六、零拷贝

1、slice

lice,对原始 ByteBuf 进行切片成多个 ByteBuf,切片后的 ByteBuf 并没有发生内存复制,还是使用原始 ByteBuf 的内存,切片后的 ByteBuf 维护独立的 read,write 指针

Netty—ByteBuf_第2张图片

例,原始 ByteBuf 进行一些初始操作

ByteBuf origin = ByteBufAllocator.DEFAULT.buffer(10);
origin.writeBytes(new byte[]{1, 2, 3, 4});
origin.readByte();
System.out.println(ByteBufUtil.prettyHexDump(origin));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 02 03 04                                        |...             |
+--------+-------------------------------------------------+----------------+

这时调用 slice 进行切片,无参 slice 是从原始 ByteBuf 的 read index 到 write index 之间的内容进行切片,切片后的 max capacity 被固定为这个区间的大小,因此不能追加 write

ByteBuf slice = origin.slice();
System.out.println(ByteBufUtil.prettyHexDump(slice));
// slice.writeByte(5); 如果执行,会报 IndexOutOfBoundsException 异常

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 02 03 04                                        |...             |
+--------+-------------------------------------------------+----------------+

如果原始 ByteBuf 再次读操作(又读了一个字节)

origin.readByte();
System.out.println(ByteBufUtil.prettyHexDump(origin));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 03 04                                           |..              |
+--------+-------------------------------------------------+----------------+

这时的 slice 不受影响,因为它有独立的读写指针

System.out.println(ByteBufUtil.prettyHexDump(slice));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 02 03 04                                        |...             |
+--------+-------------------------------------------------+----------------+

如果 slice 的内容发生了更改

slice.setByte(2, 5);
System.out.println(ByteBufUtil.prettyHexDump(slice));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 02 03 05                                        |...             |
+--------+-------------------------------------------------+----------------+

这时,原始 ByteBuf 也会受影响,因为底层都是同一块内存

System.out.println(ByteBufUtil.prettyHexDump(origin));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 03 05                                           |..              |
+--------+-------------------------------------------------+----------------+

2、duplicate

duplicate,就好比截取了原始 ByteBuf 所有内容,并且没有 max capacity 的限制,也是与原始 ByteBuf 使用同一块底层内存,只是读写指针是独立的
Netty—ByteBuf_第3张图片

3、CompositeByteBuf

CompositeByteBuf,可以将多个 ByteBuf 合并为一个逻辑上的 ByteBuf,避免拷贝

有两个 ByteBuf 如下

ByteBuf buf1 = ByteBufAllocator.DEFAULT.buffer(5);
buf1.writeBytes(new byte[]{1, 2, 3, 4, 5});
ByteBuf buf2 = ByteBufAllocator.DEFAULT.buffer(5);
buf2.writeBytes(new byte[]{6, 7, 8, 9, 10});
System.out.println(ByteBufUtil.prettyHexDump(buf1));
System.out.println(ByteBufUtil.prettyHexDump(buf2));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 05                                  |.....           |
+--------+-------------------------------------------------+----------------+
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 06 07 08 09 0a                                  |.....           |
+--------+-------------------------------------------------+----------------+

现在需要一个新的 ByteBuf,内容来自于刚才的 buf1 和 buf2,如何实现?

方法1:

ByteBuf buf3 = ByteBufAllocator.DEFAULT
    .buffer(buf1.readableBytes()+buf2.readableBytes());
buf3.writeBytes(buf1);
buf3.writeBytes(buf2);
System.out.println(ByteBufUtil.prettyHexDump(buf3));

结果

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 05 06 07 08 09 0a                   |..........      |
+--------+-------------------------------------------------+----------------+

这种方法好不好?回答是不太好,因为进行了数据的内存复制操作

方法2:

CompositeByteBuf buf3 = ByteBufAllocator.DEFAULT.compositeBuffer();
// true 表示增加新的 ByteBuf 自动递增 write index, 否则 write index 会始终为 0
buf3.addComponents(true, buf1, buf2);

结果是一样的

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 05 06 07 08 09 0a                   |..........      |
+--------+-------------------------------------------------+----------------+

CompositeByteBuf 是一个组合的 ByteBuf,它内部维护了一个 Component 数组,每个 Component 管理一个 ByteBuf,记录了这个 ByteBuf 相对于整体偏移量等信息,代表着整体中某一段的数据。

  • 优点,对外是一个虚拟视图,组合这些 ByteBuf 不会产生内存复制
  • 缺点,复杂了很多,多次操作会带来性能的损耗

七、工具类——Unpooled

Unpooled 是一个工具类,类如其名,提供了非池化的 ByteBuf 创建、组合、复制等操作

这里仅介绍其跟【零拷贝】相关的 wrappedBuffer 方法,可以用来包装 ByteBuf

ByteBuf buf1 = ByteBufAllocator.DEFAULT.buffer(5);
buf1.writeBytes(new byte[]{1, 2, 3, 4, 5});
ByteBuf buf2 = ByteBufAllocator.DEFAULT.buffer(5);
buf2.writeBytes(new byte[]{6, 7, 8, 9, 10});

// 当包装 ByteBuf 个数超过一个时, 底层使用了 CompositeByteBuf
ByteBuf buf3 = Unpooled.wrappedBuffer(buf1, buf2);
System.out.println(ByteBufUtil.prettyHexDump(buf3));

输出

         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 05 06 07 08 09 0a                   |..........      |
+--------+-------------------------------------------------+----------------+

也可以用来包装普通字节数组,底层也不会有拷贝操作

ByteBuf buf4 = Unpooled.wrappedBuffer(new byte[]{1, 2, 3}, new byte[]{4, 5, 6});
System.out.println(buf4.getClass());
System.out.println(ByteBufUtil.prettyHexDump(buf4));

输出

class io.netty.buffer.CompositeByteBuf
         +-------------------------------------------------+
         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 01 02 03 04 05 06                               |......          |
+--------+-------------------------------------------------+----------------+

你可能感兴趣的:(Netty学习之旅,java,网络)