二次型可标准化定理的证明过程给出使用二次型标准化的步骤
该方法通过计算出一个特定的正交矩阵 P \bold P P,并用 P \bold P P来进行线性变换实现得到标准形
求出 n n n元二次型矩阵 A \bold A A的全部特征值 λ i \lambda_i λi,它们分别是 n i n_i ni重根(而且对应 n i n_i ni个线性无关的特征向量)
对每个 λ i \lambda_i λi求出对应的齐次线性方程组 ( λ i E − A ) x = 0 \bold{(\lambda_i{E}-A)x=0} (λiE−A)x=0的基础解系 Φ i \Phi_i Φi(包含 n i n_i ni个线性无关向量)
分别对 Φ 1 , ⋯ , Φ s \Phi_1,\cdots,\Phi_{s} Φ1,⋯,Φs正交化得到向量组 Ψ = ϕ 1 , ⋯ , ϕ s \Psi=\phi_1,\cdots,\phi_{s} Ψ=ϕ1,⋯,ϕs( ϕ i 是 Φ i \phi_i是\Phi_i ϕi是Φi正交化后的向量组)
令矩阵 P = ( Ψ ) \bold P=(\Psi) P=(Ψ),则 P \bold P P能使 P T A P = Λ \bold{P^{T}AP=\Lambda} PTAP=Λ= diag ( λ i , ⋯ , λ n ) \text{diag}(\lambda_i,\cdots,\lambda_n) diag(λi,⋯,λn)
则正交线性变换 x = P y \bold{x=Py} x=Py就是所求的线性变换
y = ( y 1 , ⋯ , y n ) T \bold y=(y_1,\cdots,y_n)^{T} y=(y1,⋯,yn)T
f ( x 1 , ⋯ , x n ) → x = Q y g ( y 1 , ⋯ , y n ) = ∑ i = 1 n λ i y i 2 f(x_1,\cdots,x_n)\xrightarrow{x=Qy}g(y_1,\cdots,y_n)=\sum\limits_{i=1}^{n}\lambda_iy_i^2 f(x1,⋯,xn)x=Qyg(y1,⋯,yn)=i=1∑nλiyi2
(1)
,
(1)
式中只有第一项 b i ( x i + ⋯ ) 2 b_{i}(x_{i}+\cdots)^{2} bi(xi+⋯)2包含 x i i x_{ii} xii,其余项不包含 x i i x_{ii} xii(1)
中的下一个平方项进行配方(理论分析中已经指出,(1)
包含了所有 x i x_i xi的平方项 i = 1 , ⋯ , n i=1,\cdots,n i=1,⋯,n,最终所有 x i , i = 1 , ⋯ , n x_i,i=1,\cdots,n xi,i=1,⋯,n都会被配方成形如 b i ( x i i + ⋯ ) 2 b_{i}(x_{ii}+\cdots)^2 bi(xii+⋯)2的形式(2)
( i = 1 , ⋯ , n ) (i=1,\cdots,n) (i=1,⋯,n);求解该线性方程组,得到线性变换 x i = y i − ⋯ x_i=y_i-\cdots xi=yi−⋯(3)
(3)
就能够使 f f f标准化f ( x 1 , x 2 , x 3 ) = 4 ( x 1 2 + x 2 2 + x 3 + x 1 x 2 + x 1 x 3 + x 2 x 3 ) f(x_1,x_2,x_3)=4(x_1^2+x_2^2+x^3+x_1x_2+x_1x_3+x_2x_3) f(x1,x2,x3)=4(x12+x22+x3+x1x2+x1x3+x2x3)
配方得到(0)
f ( x 1 , x 2 , x 3 ) = 4 ( x 1 2 + x 1 ( x 2 + x 3 ) + x 2 2 + x 3 2 + x 2 x 3 ) = 4 [ ( x 1 + 1 2 x 1 ( x 2 + x 3 ) ) 2 − 1 4 ( x 2 + x 3 ) 2 + x 2 2 + x 3 2 + x 2 x 3 ] = 4 ( x 1 + 1 2 ( x 2 + x 3 ) ) 2 − ( x 2 2 + 2 x 2 x 3 + x 3 2 ) + 4 ( x 2 2 + x 3 2 + x 2 x 3 ) = 4 ( x 1 + 1 2 ( x 2 + x 3 ) ) 2 + 3 x 2 2 + 3 x 3 2 + 2 x 2 x 3 = 4 ( x 1 + 1 2 ( x 2 + x 3 ) ) 2 + 3 ( x 2 2 + 2 3 x 2 x 3 ) + 3 x 3 2 = 4 ( x 1 + 1 2 ( x 2 + x 3 ) ) 2 + 3 [ ( x 2 + 1 3 x 3 ) 2 − 1 9 x 3 2 ] + 3 x 3 2 = 4 ( x 1 + 1 2 ( x 2 + x 3 ) ) 2 + 3 ( x 2 + 1 3 x 3 ) 2 − 1 3 x 3 2 + 3 x 3 2 = 4 ( x 1 + 1 2 ( x 2 + x 3 ) ) 2 + 3 ( x 2 + 1 3 x 3 ) 2 + 8 3 x 3 2 \begin{aligned} f(x_1,x_2,x_3) &=4(x_1^2+x_1(x_2+x_3)+x_2^2+x_3^2+x_2x_3) \\&=4[(x_1+\frac{1}{2}x_1(x_2+x_3))^2-\frac{1}{4}(x_2+x_3)^2+x_2^2+x_3^2+x_2x_3] \\&=4(x_1+\frac{1}{2}(x_2+x_3))^2-(x_2^2+2x_2x_3+x_3^2)+4(x_2^2+x_3^2+x_2x_3) \\&=4(x_1+\frac{1}{2}(x_2+x_3))^2+3x_2^2+3x_3^2+2x_2x_3 \\&=4(x_1+\frac{1}{2}(x_2+x_3))^2+3(x_2^2+\frac{2}{3}x_2x_3)+3x_3^2 \\&=4(x_1+\frac{1}{2}(x_2+x_3))^2+3[(x_2+\frac{1}{3}x_3)^2-\frac{1}{9}x_3^2]+3x_3^2 \\&=4(x_1+\frac{1}{2}(x_2+x_3))^2+3(x_2+\frac{1}{3}x_3)^2-\frac{1}{3}x_3^2+3x_3^2 \\&=4(x_1+\frac{1}{2}(x_2+x_3))^2+3(x_2+\frac{1}{3}x_3)^2+\frac{8}{3}x_3^2 \end{aligned} f(x1,x2,x3)=4(x12+x1(x2+x3)+x22+x32+x2x3)=4[(x1+21x1(x2+x3))2−41(x2+x3)2+x22+x32+x2x3]=4(x1+21(x2+x3))2−(x22+2x2x3+x32)+4(x22+x32+x2x3)=4(x1+21(x2+x3))2+3x22+3x32+2x2x3=4(x1+21(x2+x3))2+3(x22+32x2x3)+3x32=4(x1+21(x2+x3))2+3[(x2+31x3)2−91x32]+3x32=4(x1+21(x2+x3))2+3(x2+31x3)2−31x32+3x32=4(x1+21(x2+x3))2+3(x2+31x3)2+38x32
令 { y 1 = x 1 + 1 2 ( x 2 + x 3 ) y 2 = x 2 + 1 3 x 3 y 3 = x 3 \begin{cases}y_1=&x_1+\frac{1}{2}(x_2+x_3)\\y_2=&x_2+\frac{1}{3}x_3\\y_3=&x_3\end{cases} ⎩ ⎨ ⎧y1=y2=y3=x1+21(x2+x3)x2+31x3x3(1)
;则 f ( x 1 , x 2 , x 3 ) = g ( y 1 , y 2 , y 3 ) = 4 y 1 2 + 3 y 2 2 + 8 3 y 3 2 f(x_1,x_2,x_3)=g(y_1,y_2,y_3)=4y_1^2+3y_2^2+\frac{8}{3}y_3^2 f(x1,x2,x3)=g(y1,y2,y3)=4y12+3y22+38y32,这是一个标准形二次型
通过解线性方程组(1)
,得 y → x \bold{y\to{x}} y→x所用的线性变换 x = Q y \bold{x=Qy} x=Qy
x 1 = y 1 − 1 2 y 2 − 1 3 y 3 x_1=y_1-\frac{1}{2}y_2-\frac{1}{3}y_3 x1=y1−21y2−31y3
x 2 = y 2 − 1 3 y 3 x_2=y_2-\frac{1}{3}y_3 x2=y2−31y3
x 3 = y 3 x_3=y_3 x3=y3
变换矩阵: Q = ( 1 − 1 2 − 1 3 0 1 − 1 3 0 0 1 ) \bold Q=\begin{pmatrix}1&-\frac{1}{2}&-\frac{1}{3}\\0&1&-\frac{1}{3}\\0&0&1\end{pmatrix} Q= 100−2110−31−311
求变换矩阵也可利用可逆线性变换的逆变换公式:若 y = C x \bold{y=Cx} y=Cx则 x = C − 1 y \bold{x=C^{-1}y} x=C−1y,也是计算 C = ( 1 1 2 1 2 0 1 1 3 0 0 1 ) \bold C=\begin{pmatrix}1&\frac{1}{2}&\frac{1}{2}\\0&1&\frac{1}{3}\\0&0&1\end{pmatrix} C= 100211021311 的逆矩阵 C \bold{C} C,则 Q = C − 1 \bold{Q=C^{-1}} Q=C−1
将此线性变换代入 f f f或者 g g g中就可得到 f f f的标准形: f = 4 y 1 2 + 3 y 2 2 + 8 3 y 3 2 f=4y_1^2+3y_2^2+\frac{8}{3}y_3^2 f=4y12+3y22+38y32,这个表达式可以从已经配好方的式(2)
中直接读出(将平方项依次用 y 1 , ⋯ , y n y_1,\cdots,y_n y1,⋯,yn代替)
f ( x 1 , x 2 , x 3 ) = x 1 x 2 + x 1 x 3 + 2 x 2 x 3 f(x_1,x_2,x_3)=x_1x_2+x_1x_3+2x_2x_3 f(x1,x2,x3)=x1x2+x1x3+2x2x3标准化
对于 x 1 x 2 x_1x_2 x1x2
T : { x 1 = y 1 − y 2 x 2 = y 1 + y 2 x 3 = y 3 T = ( 1 1 0 1 − 1 0 0 0 1 ) T:\begin{cases} x_1=y_1-y_2\\ x_2=y_1+y_2\\ x_3=y_3 \end{cases} \\ T=\begin{pmatrix} 1&1&0\\ 1&-1&0\\ 0&0&1 \end{pmatrix} T:⎩ ⎨ ⎧x1=y1−y2x2=y1+y2x3=y3T= 1101−10001
把线性变换 x = T y \bold{x=Ty} x=Ty带入 f f f;
问题转换为第一种类型,配方得:式(1)
令
{ z 1 = y 1 + 3 2 y 3 z 2 = y 1 + 1 2 y 3 z 3 = y 3 f = z 1 2 − z 2 2 − 2 z 3 2 \\ \begin{cases} z_1=y_1+\frac{3}{2}y_3\\ z_2=y_1+\frac{1}{2}y_3\\ z_3=y_3 \end{cases} \\ f=z_1^2-z_2^2-2z_3^2 ⎩ ⎨ ⎧z1=y1+23y3z2=y1+21y3z3=y3f=z12−z22−2z32
解上述线性方程组,得新线性变换 y = Q z \bold{y=Qz} y=Qz及其变换矩阵:
{ y 1 = z 1 − 3 2 z 3 y 2 = z 2 − 1 2 z 3 y 3 = z 3 Q = ( 1 0 − 3 2 0 1 − 1 2 0 0 1 ) \begin{cases} y_1=z_1-\frac{3}{2}z_3\\ y_2=z_2-\frac{1}{2}z_3\\ y_3=z_3 \end{cases} \quad Q=\begin{pmatrix} 1&0&-\frac{3}{2}\\ 0&1&-\frac{1}{2}\\ 0&0&1 \end{pmatrix} ⎩ ⎨ ⎧y1=z1−23z3y2=z2−21z3y3=z3Q= 100010−23−211
根据线性变换乘法和矩阵乘法的关系 ( x = T y = T ( Q z ) = ( T Q ) z ) (\bold{x=Ty=T(Qz)=(TQ)z}) (x=Ty=T(Qz)=(TQ)z),可求得能将 f f f标准化的线性变换 x = C z \bold{x=Cz} x=Cz的变换矩阵 C \bold{C} C为
C = T Q = ( 1 1 0 1 − 1 0 0 0 1 ) ( 1 0 − 3 2 0 1 − 1 2 0 0 1 ) = ( 1 1 − 2 1 − 1 − 1 0 0 1 ) C=TQ =\begin{pmatrix} 1&1&0\\ 1&-1&0\\ 0&0&1 \end{pmatrix} \begin{pmatrix} 1&0&-\frac{3}{2}\\ 0&1&-\frac{1}{2}\\ 0&0&1 \end{pmatrix} =\begin{pmatrix} 1&1&-{2}\\ 1&-1&-1\\ 0&0&1 \end{pmatrix} C=TQ= 1101−10001 100010−23−211 = 1101−10−2−11
由式(1)
,标准化后的二次型为 f = z 2 − z 2 2 − 2 z 3 2 f=z^2-z_2^2-2z_3^2 f=z2−z22−2z32
任意实 n n n阶对称阵 A A A都合同于对角阵 Λ \Lambda Λ,即存在可逆矩阵 P \bold P P,使得 P T A P = Λ \bold{P^{T}AP=\Lambda} PTAP=Λ
而可逆矩阵 P \bold{P} P可以表示为若干初等矩阵的乘积; P \bold{P} P= P 1 ⋯ P s \bold{P}_1\cdots\bold{P}_s P1⋯Ps,从而有 ( P 1 ⋯ P s ) T A ( P 1 ⋯ P s ) = Λ \bold{(\bold{P}_1\cdots{P}_s)^{T}A(\bold{P}_1\cdots{P}_s)=\Lambda} (P1⋯Ps)TA(P1⋯Ps)=Λ,即 P s T ⋯ P 1 T A P 1 ⋯ P s = Λ \bold{\bold{P}_s^{T}\cdots{P}_{1}^{T}A\bold{P}_1\cdots{P}_s=\Lambda} PsT⋯P1TAP1⋯Ps=Λ(1)
初等矩阵的转置仍然是初等矩阵,并且矩阵 A \bold{A} A左乘 P i T \bold{P}_i^{T} PiT并右乘 P i \bold{P}_i Pi相当于对矩阵 A \bold{A} A作成对的同类型同顺序的行列初等变换(原理参考初等矩阵的性质)
因此,我们可以通过将 A \bold{A} A经过成对初等变换转换为一个对角阵 Λ \bold\Lambda Λ
(1)
,每一次初等行变换对应于 P T i \bold{P^{T}}_i PTi,绑定的列变换对应于 P i \bold{P}_i Pi这部分对初等变换法求解标准化二次型的线性可逆变换矩阵的可行性和正确性给出证明,并且给出了具体的操作方法
构造松散分块矩阵 ( A E ) \bold{\binom{A}{E}} (EA)并执行初等变换
之所以称为松散,因为我们在将 A A A变换为 Λ \Lambda Λ时,分块E只需要接收列变换 P 1 P 2 ⋯ P s \bold{P_1P_2\cdots{P_s}} P1P2⋯Ps,而不需要做行变换(即忽略行变换)
在实际的操作中,可以分为行变换阶段和列变换阶段
当 A \bold{A} A被一系列成对的初等行列变换转为对角阵 Λ \Lambda Λ,则记录列变换的 E \bold{E} E也就变成了 P = P 1 P 2 ⋯ P s \bold{P=P_1P_2\cdots{P_s}} P=P1P2⋯Ps
因此 P , Λ \bold{P,\Lambda} P,Λ是同时被求解出来:
用初等变换法将 f ( x 1 , x 2 , x 3 ) f(x_1,x_2,x_3) f(x1,x2,x3)= x 1 2 + 2 x 2 2 + 2 x 3 2 − 2 x 1 x 2 + 4 x 1 x 3 − 6 x 2 x 3 x_1^2+2x_2^2+2x_3^2-2x_1x_2+4x_1x_3-6x_2x_3 x12+2x22+2x32−2x1x2+4x1x3−6x2x3
解
f f f的系数矩阵为
A = ( 1 − 1 2 − 1 2 − 3 2 − 3 2 ) \bold{A}=\begin{pmatrix} 1&-1&2\\ -1&2&-3\\ 2&-3&2 \end{pmatrix} A= 1−12−12−32−32
将 A \bold{A} A进初等变换化为对角阵 Λ \bold\Lambda Λ
先执行初等列变换 L = P 1 T ⋯ P s T A \bold{L}=\bold{P}_1^{T}\cdots\bold{P}_s^{T}\bold{A} L=P1T⋯PsTA使 A \bold{A} A化为上三角阵
A → r 2 + r 1 ; r 3 − 2 r 1 ( 1 − 1 2 0 1 − 1 0 − 1 − 2 ) → r 3 + r 2 ( 1 − 1 2 0 1 − 1 0 0 − 3 ) = L \bold{A}\xrightarrow{r_2+r_1;r_3-2r_1} \begin{pmatrix} 1&-1&2\\ 0&1&-1\\ 0&-1&-2 \end{pmatrix} \xrightarrow{r_3+r_2} \begin{pmatrix} 1&-1&2\\ 0&1&-1\\ 0&0&-3 \end{pmatrix} =\bold{L} Ar2+r1;r3−2r1 100−11−12−1−2 r3+r2 100−1102−1−3 =L
再依次地执行对称的列变换 R = L P 1 ⋯ P s \bold{R}=\bold{L}\bold{P}_1\cdots\bold{P}_s R=LP1⋯Ps(1)
L → c 2 + c 1 ; c 3 − 2 c 1 ( 1 0 0 0 1 − 1 0 0 − 3 ) → c 3 + c 2 ( 1 0 0 0 1 0 0 0 − 3 ) = R \bold{L}\xrightarrow{c_2+c_1;c_3-2c_1} \begin{pmatrix} 1&0&0\\ 0&1&-1\\ 0&0&-3 \end{pmatrix} \xrightarrow{c_3+c_2} \begin{pmatrix} 1&0&0\\ 0&1&0\\ 0&0&-3 \end{pmatrix} =\bold{R} Lc2+c1;c3−2c1 1000100−1−3 c3+c2 10001000−3 =R
再计算 P = E P 1 ⋯ P s \bold{P}=\bold{E}\bold{P}_1\cdots\bold{P}_s P=EP1⋯Ps(2)
E = ( 1 0 0 0 1 0 0 0 1 ) → c 2 + c 1 ; c 3 − 2 c 1 ( 1 1 − 2 0 1 0 0 0 1 ) → c 3 + c 2 ( 1 1 − 1 0 1 1 0 0 1 ) = P \bold{E}=\begin{pmatrix} 1&0&0\\ 0&1&0\\ 0&0&1 \end{pmatrix} \xrightarrow{c_2+c_1;c_3-2c_1} \begin{pmatrix} 1&1&-2\\ 0&1&0\\ 0&0&1 \end{pmatrix} \xrightarrow{c_3+c_2} \begin{pmatrix} 1&1&-1\\ 0&1&1\\ 0&0&1 \end{pmatrix} =\bold{P} E= 100010001 c2+c1;c3−2c1 100110−201 c3+c2 100110−111 =P
从而 Λ = R = ( 1 0 0 0 1 0 0 0 − 3 ) \bold{\Lambda=R}=\begin{pmatrix} 1&0&0\\ 0&1&0\\ 0&0&-3 \end{pmatrix} Λ=R= 10001000−3 ; P = ( 1 1 − 1 0 1 1 0 0 1 ) \bold{P}=\begin{pmatrix} 1&1&-1\\ 0&1&1\\ 0&0&1 \end{pmatrix} P= 100110−111
即线性变换 x = P y \bold{x=Py} x=Py代入 f ( x ) f(\bold{x}) f(x),得标准形 f ( x ) = f ( P y ) f(\bold{x})=f(\bold{Py}) f(x)=f(Py)= g ( y ) g(\bold{y}) g(y)= y T Λ y \bold{y^T\Lambda{y}} yTΛy,其中 x = ( x 1 , x 2 , x 3 ) \bold{x}=(x_1,x_2,x_3) x=(x1,x2,x3), y = ( y 1 , y 2 , y 3 ) \bold{y}=(y_1,y_2,y_3) y=(y1,y2,y3)
用求和式表示为 f f f= y 1 2 + y 2 2 − 3 y 3 2 y_1^2+y_2^2-3y_3^2 y12+y22−3y32