STM32f103入门(10)ADC模数转换器

ADC模数转换器

  • ADC简介
  • AD单通道
    • 初始化代码编写
      • 第一步开启时钟
      • 第二步 RCCCLK分频 6分频 72M/6=12M
      • 第三步 配置GPIO 配置为AIN状态
      • 第四步,选择规则组的输入通道
      • 第五步 用结构体 初始化ADC
      • 第六步 对ADC进行校准
      • 编写获取电压函数
      • 初始化代码如下
    • Main函数编写

ADC简介

ADC简介
  • ADC(Analog-Digital Converter)模拟-数字转换器
  • ADC可以将引脚上连续变化的模拟电压转换为内存中存储的数字变量,建立模拟电路到数字电路的桥梁
  • 12位逐次逼近型ADC,1us转换时间
  • 输入电压范围:0~ 3.3V,转换结果范围:0~ 4095
  • 18个输入通道,可测量16个外部和2个内部信号源
  • 规则组和注入组两个转换单元
  • 模拟看门狗自动监测输入电压范围
  • STM32F103C8T6 ADC资源:ADC1、ADC2,10个外部输入通道

DAC 数字变量转化为模拟遍变量

AD单通道

STM32f103入门(10)ADC模数转换器_第1张图片

第一步 开启RCC时钟 ,包括ADC和GPIO的时钟 ADCCLK的分频器也需要配置
第二步 配置GPIO把需要用的配置成模拟输入的模式
第三步 配置多路开关把左边的通道接入到右边的规则组列表里
第四步 配置AD转换器 {
单次转换还是连续转换
扫描还是非扫描
有几个通道
触发源是什么
数据对齐时左对齐还是右对齐
}
第五部开启ADC

ADC配置函数

//ADCCLK分频器配置
RCC_ADCCLKConfig  可以选择2468分频输入到ADCCLK

//恢复缺省配置
void ADC_DeInit(ADC_TypeDef* ADCx);
//Init初始化
void ADC_Init(ADC_TypeDef* ADCx, ADC_InitTypeDef* ADC_InitStruct);

//StructiInit 结构体初始化
void ADC_StructInit(ADC_InitTypeDef* ADC_InitStruct);

//ADC上电 开关控制
void ADC_Cmd(ADC_TypeDef* ADCx, FunctionalState NewState);

//用于开启DMA输出信号的
void ADC_DMACmd(ADC_TypeDef* ADCx, FunctionalState NewState);

//中断输出控制  用于控制某个中断能否通往NVIC
void ADC_ITConfig(ADC_TypeDef* ADCx, uint16_t ADC_IT, FunctionalState NewState);

//复位校准 
void ADC_ResetCalibration(ADC_TypeDef* ADCx);

//获取复位校准状态
FlagStatus ADC_GetResetCalibrationStatus(ADC_TypeDef* ADCx);

//开启校准 ,获取开始校准状态
void ADC_StartCalibration(ADC_TypeDef* ADCx);
FlagStatus ADC_GetCalibrationStatus(ADC_TypeDef* ADCx);

// 用于软件触发的函数
void ADC_SoftwareStartConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState);

//判断是否结束
FlagStatus ADC_GetFlagStatus(ADC_TypeDef* ADCx, uint8_t ADC_FLAG);

//配置间断模式
void ADC_DiscModeChannelCountConfig(ADC_TypeDef* ADCx, uint8_t Number);
void ADC_DiscModeCmd(ADC_TypeDef* ADCx, FunctionalState NewState);

//ADC规则组通道配置
void ADC_RegularChannelConfig(ADC_TypeDef* ADCx, uint8_t ADC_Channel, uint8_t Rank, uint8_t ADC_SampleTime);

//ADC外部触发转换控制  是否允许外部触发转换 
void ADC_ExternalTrigConvCmd(ADC_TypeDef* ADCx, FunctionalState NewState);

//ADC获取转换值
uint16_t ADC_GetConversionValue(ADC_TypeDef* ADCx);

//ADC获取双模式转换值
uint32_t ADC_GetDualModeConversionValue(void);


初始化代码编写

第一步开启时钟

	RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1,ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);

第二步 RCCCLK分频 6分频 72M/6=12M

	RCC_ADCCLKConfig(RCC_PCLK2_Div6);//72/6

第三步 配置GPIO 配置为AIN状态

AIN状态下GPIO时无效的 断开GPIO,防止GPIO口的输入输出对我模拟电压造成干扰,AIN模式 ADC的专属模式

GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;// input moni
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_Init(GPIOA, &GPIO_InitStructure);

第四步,选择规则组的输入通道

STM32f103入门(10)ADC模数转换器_第2张图片
STM32f103入门(10)ADC模数转换器_第3张图片

ADC_RegularChannelConfig(ADC1, ADC_Channel_0,1,ADC_SampleTime_55Cycles5);
第一个参数 ADCx
第二个参数 通道0 ~ 17
第三个参数 规则组序列器里的次序 1 ~ 16
第四个参数 采样时间 55.5 采样时间55.5*ADCCLK的周期

第五步 用结构体 初始化ADC

ADC_InitTypeDef ADC_InitStruture;
//ADC的工作模式  独立模式还是双ADC模式
ADC_InitStruture.ADC_Mode=ADC_Mode_Independent;
//数据对齐
ADC_InitStruture.ADC_DataAlign=ADC_DataAlign_Right;
//外部触发源选择 软件触发
ADC_InitStruture.ADC_ExternalTrigConv=ADC)ExternalTrigConv_None;
//单词转换 非扫描
ADC_InitStruture.ADC_ContinuousConvMode= DISABLE;
ADC_InitStruture.ADC_ScanConvMode=DISABLE;
//通道数目
ADC_InitStruture.ADC_NbrOfChannel =1 ;

ADC_Cmd(ADC1,ENABLE);//启动

第六步 对ADC进行校准

ADC_ResetCalibration(ADC1);//reset
while(ADC_GetResetCalibrationStatus(ADC1)==SET);//等待校准完成
ADC_StartCalibration(ADC1);
while(ADC_GetCalibrationStatus(ADC1)==SET);

编写获取电压函数

uint16_t AD_GetValue(void){
		ADC_SoftwareStartConvCmd(ADC1,ENABLE);//ruan jian chu fa
		while(ADC_GetFlagStatus(ADC1,ADC_FLAG_EOC)==RESET);
	return ADC_GetConversionValue(ADC1);
}

这时候获得的不是直观电压
我们需要线性变换
float V=(float)ADC_GetConversionValue(ADC1)/4095 *3.3

应用场景
结合光敏传感器

当电压低于某个阈值时关灯 ,高于某个阈值时开灯
但是电压总是会抖动 ,如果是一个确定的阈值,那么有时候会出现亮灭抖动, 我们可以搞一个下界阈值,和上届阈值,如果高于上届阈值开灯
,而低于下届阈值则关灯,上届与下届阈值之间又一定的差值,这个差值高于抖动区间,类似于施密特触发器

初始化代码如下

#include "stm32f10x.h"                  // Device header

void AD_Init(void)
{
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
	
	RCC_ADCCLKConfig(RCC_PCLK2_Div6);
	
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOA, &GPIO_InitStructure);
	
	ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5);
	
	ADC_InitTypeDef ADC_InitStructure;
	ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
	ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
	ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
	ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
	ADC_InitStructure.ADC_ScanConvMode = DISABLE;
	ADC_InitStructure.ADC_NbrOfChannel = 1;
	ADC_Init(ADC1, &ADC_InitStructure);
	
	ADC_Cmd(ADC1, ENABLE);
	
	ADC_ResetCalibration(ADC1);
	while (ADC_GetResetCalibrationSta tus(ADC1) == SET);
	ADC_StartCalibration(ADC1);
	while (ADC_GetCalibrationStatus(ADC1) == SET);
}

uint16_t AD_GetValue(void)
{
	ADC_SoftwareStartConvCmd(ADC1, ENABLE);
	while (ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) == RESET);
	return ADC_GetConversionValue(ADC1);
}

Main函数编写

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "AD.h"

uint16_t ADValue;
float Voltage;

int main(void)
{
	OLED_Init();
	AD_Init();
	
	OLED_ShowString(1, 1, "ADValue:");
	OLED_ShowString(2, 1, "Volatge:0.00V");
	
	while (1)
	{
		ADValue = AD_GetValue();
		Voltage = (float)ADValue / 4095 * 3.3;
		
		OLED_ShowNum(1, 9, ADValue, 4);
		OLED_ShowNum(2, 9, Voltage, 1);
		OLED_ShowNum(2, 11, (uint16_t)(Voltage * 100) % 100, 2);
		
		Delay_ms(100);
	}
}

你可能感兴趣的:(stm32,嵌入式硬件,单片机)