在上一小节中,学习了内核中自旋锁的使用,而自旋锁若是使用不当就会产生死锁,在本章将会对自旋锁的特殊情况-死锁进行讲解。
死锁是指两个或多个事物在同一资源上相互占用,并请求锁定对方的资源,从而导致恶性循环的现象。当多个进程因竞争资源而造成的一种僵局(互相等待),若无外力作用,这些进程都将无法向前推进,这种情况就是死锁。
自旋锁死锁发生存在两种情况:
(1)第一种情况是拥有自旋锁的进程A在内核态阻塞了,内核调度B进程,碰巧B进程也要获得自旋锁,此时B只能自旋转。而此时抢占已经关闭(在单核条件下)不会调度A进程了,B永远自旋,产生死锁,如下图(图 22-1)所示:
图 22-1
相应的解决办法是,在自旋锁的使用过程中要尽可能短的时间内拥有自旋锁,而且不能在临界区中调用导致线程休眠的函数。
第二种情况是进程A拥有自旋锁,中断到来,CPU执行中断函数,中断处理函数,中断处理函数需要获得自旋锁,访问共享资源,此时无法获得锁,只能自旋,从而产生死锁,如下图(图22-2)所示:
图 22-2
对于中断引发的死锁,最好的解决方法就是在获取锁之前关闭本地中断,Linux内核在“/include/linux/spinlock.h”文件中提供了相应的API 函数,如下(图22-3)所示:
函数 | 描述 |
---|---|
void spin_lock_irq(spinlock_t *lock) | 禁止本地中断,并获取自旋锁。 |
void spin_unlock_irq(spinlock_t *lock) | 激活本地中断,并释放自旋锁。 |
void spin_lock_irqsave(spinlock_t *lock, unsigned long flags) | 恢复中断状态,关闭中断并获取自旋锁。 |
void spin_unlock_irqrestore(spinlock_t *lock, unsigned long flags) | 将中断状态恢复到以前的状态,打开中断并释放自旋锁 |
void spin_lock_bh(spinlock_t *lock) | 关闭下半部,获取自旋锁 |
void spin_unlock_bh(spinlock_t *lock) | 打开下半部,获取自旋锁 |
表 22-3
由于Linux内核运行是非常复杂的,很难确定某个时刻的中断状态,因此建议使用 spin_lock_irqsave/spin_unlock_irqrestore,因为这一组函数会保存中断状态,在释放锁的时候会恢复中断状态。
在下一小节中将进行自旋锁死锁实验,本次实验所采取的是第一种情况,即拥有自旋锁的进程A在内核态阻塞了,内核调度B进程,碰巧B进程也要获得自旋锁,依次产生死锁。
本实验对应的网盘路径为:iTOP-RK3568开发板【底板V1.7版本】\03_【iTOP-RK3568开发板】指南教程\02_Linux驱动配套资料\04_Linux驱动例程\17\module。
本章节实验以19章并发与竞争实验为基础,在open()函数中加入了自旋锁加锁,在close()函数中加入了自旋锁解锁,由于在write()函数中存在sleep()睡眠函数,所以会造成内核阻塞,睡眠期间如果使用另一个进程获取该自旋锁,就会造成死锁。
编写完成的dielock.c代码如下所示
#include
#include
#include
#include
#include
#include
#include
#include
static spinlock_t spinlock_test;//定义spinlock_t类型的自旋锁变量spinlock_test
static int open_test(struct inode *inode,struct file *file)
{
//printk("\nthis is open_test \n");
spin_lock(&spinlock_test);//自旋锁加锁
return 0;
}
static ssize_t read_test(struct file *file,char __user *ubuf,size_t len,loff_t *off)
{
int ret;
char kbuf[10] = "topeet";//定义char类型字符串变量kbuf
printk("\nthis is read_test \n");
ret = copy_to_user(ubuf,kbuf,strlen(kbuf));//使用copy_to_user接收用户空间传递的数据
if (ret != 0){
printk("copy_to_user is error \n");
}
printk("copy_to_user is ok \n");
return 0;
}
static char kbuf[10] = {0};//定义char类型字符串全局变量kbuf
static ssize_t write_test(struct file *file,const char __user *ubuf,size_t len,loff_t *off)
{
int ret;
ret = copy_from_user(kbuf,ubuf,len);//使用copy_from_user接收用户空间传递的数据
if (ret != 0){
printk("copy_from_user is error\n");
}
if(strcmp(kbuf,"topeet") == 0 ){//如果传递的kbuf是topeet就睡眠四秒钟
ssleep(4);
}
else if(strcmp(kbuf,"itop") == 0){//如果传递的kbuf是itop就睡眠两秒钟
ssleep(2);
}
printk("copy_from_user buf is %s \n",kbuf);
return 0;
}
static int release_test(struct inode *inode,struct file *file)
{
printk("\nthis is release_test \n");
spin_unlock(&spinlock_test);//自旋锁解锁
return 0;
}
struct chrdev_test {
dev_t dev_num;//定义dev_t类型变量dev_num来表示设备号
int major,minor;//定义int类型的主设备号major和次设备号minor
struct cdev cdev_test;//定义struct cdev 类型结构体变量cdev_test,表示要注册的字符设备
struct class *class_test;//定于struct class *类型结构体变量class_test,表示要创建的类
};
struct chrdev_test dev1;//创建chrdev_test类型的
struct file_operations fops_test = {
.owner = THIS_MODULE,//将owner字段指向本模块,可以避免在模块的操作正在被使用时卸载该模块
.open = open_test,//将open字段指向open_test(...)函数
.read = read_test,//将read字段指向read_test(...)函数
.write = write_test,//将write字段指向write_test(...)函数
.release = release_test,//将release字段指向release_test(...)函数
};
static int __init atomic_init(void)
{
spin_lock_init(&spinlock_test);
if(alloc_chrdev_region(&dev1.dev_num,0,1,"chrdev_name") < 0 ){//自动获取设备号,设备名chrdev_name
printk("alloc_chrdev_region is error \n");
}
printk("alloc_chrdev_region is ok \n");
dev1.major = MAJOR(dev1.dev_num);//使用MAJOR()函数获取主设备号
dev1.minor = MINOR(dev1.dev_num);//使用MINOR()函数获取次设备号
printk("major is %d,minor is %d\n",dev1.major,dev1.minor);
cdev_init(&dev1.cdev_test,&fops_test);//使用cdev_init()函数初始化cdev_test结构体,并链接到fops_test结构体
dev1.cdev_test.owner = THIS_MODULE;//将owner字段指向本模块,可以避免在模块的操作正在被使用时卸载该模块
cdev_add(&dev1.cdev_test,dev1.dev_num,1);//使用cdev_add()函数进行字符设备的添加
dev1.class_test = class_create(THIS_MODULE,"class_test");//使用class_create进行类的创建,类名称为class_test
device_create(dev1.class_test,0,dev1.dev_num,0,"device_test");//使device_create进行设备的创建,设备名称为device_test
return 0;
}
static void __exit atomic_exit(void)
{
device_destroy(dev1.class_test,dev1.dev_num);//删除创建的设备
class_destroy(dev1.class_test);//删除创建的类
cdev_del(&dev1.cdev_test);//删除添加的字符设备cdev_test
unregister_chrdev_region(dev1.dev_num,1);//释放字符设备所申请的设备号
printk("module exit \n");
}
Module_init(atomic_init);
module_exit(atomic_exit)
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("topeet");
本实验应用程序对应的网盘路径为:iTOP-RK3568开发板【底板V1.7版本】\03_【iTOP-RK3568开发板】指南教程\02_Linux驱动配套资料\04_Linux驱动例程\17\app。
本测试app代码和上一章节相同,需要输入两个参数,第一个参数为对应的设备节点,第二个参数为“topeet”或者“itop”,分别代表向设备写入的数据,编写完成的应用程序app.c内容如下所示:
#include
#include
#include
#include
#include
#include
int main(int argc, char *argv[])
{
int fd;//定义int类型的文件描述符
char str1[10] = {0};//定义读取缓冲区str1
fd = open(argv[1],O_RDWR);//调用open函数,打开输入的第一个参数文件,权限为可读可写
if(fd < 0 ){
printf("file open failed \n");
return -1;
}
/*如果第二个参数为topeet,条件成立,调用write函数,写入topeet*/
if (strcmp(argv[2],"topeet") == 0 ){
write(fd,"topeet",10);
}
/*如果第二个参数为itop,条件成立,调用write函数,写入itop*/
else if (strcmp(argv[2],"itop") == 0 ){
write(fd,"itop",10);
}
close(fd);
return 0;
}
由于本次测试的CPU为多核心CPU,其他核心仍旧可以调度其他进程,所以需要多次使用taskset函数指定CPU进行进程的运行,以此来产生死锁,在与app.c同级目录下创建名为app.sh的脚本文件,脚本内容如下所示:
#!/bin/bash
taskset -c 0 ./app /dev/device_test topeet &
taskset -c 1 ./app /dev/device_test topeet &
taskset -c 2 ./app /dev/device_test topeet &
taskset -c 3 ./app /dev/device_test topeet &
taskset -c 0 ./app /dev/device_test topeet &
taskset -c 1 ./app /dev/device_test topeet &
taskset -c 2 ./app /dev/device_test topeet &
保存退出之后,需要使用以下命令赋予脚本可执行权限,如下图(图22-4)所示:
chmod 777 app.sh
图 22-4
至此测试程序app.c和运行脚本app.sh就编写完成了。
在上一小节中的dielock.c代码同一目录下创建 Makefile 文件,Makefile 文件内容如下所示:
export ARCH=arm64#设置平台架构
export CROSS_COMPILE=aarch64-linux-gnu-#交叉编译器前缀
obj-m += dielock.o #此处要和你的驱动源文件同名
KDIR :=/home/topeet/Linux/linux_sdk/kernel #这里是你的内核目录
PWD ?= $(shell pwd)
all:
make -C $(KDIR) M=$(PWD) modules #make操作
clean:
make -C $(KDIR) M=$(PWD) clean #make clean操作
对于Makefile的内容注释已在上图添加,保存退出之后,来到存放dielock.c和Makefile文件目录下,如下图(图22-5)所示:
图 22-5
然后使用命令“make”进行驱动的编译,编译完成如下图(图22-6)所示:
图 22-6
编译完生成dielock.ko目标文件,如下图(图22-7)所示:
图 22-7
至此驱动模块就编译成功了,下面进行应用程序的编译。
来到应用程序app.c文件的存放路径如下图(图22-8)所示:
图 22-8
然后使用以下命令对app.c进行交叉编译,编译完成如下图(图22-9)所示:
aarch64-linux-gnu-gcc -o app app.c -static
图 22-9
生成的app文件就是之后放在开发板上运行的可执行文件,至此应用程序的编译就完成了。
开发板启动之后,使用以下命令进行驱动模块的加载,如下图(图22-10)所示:
insmod dielock.ko
图 22-10
可以看到申请的主设备号和次设备号就被打印了出来,然后使用以下代码对自动生成的设备节点device_test进行查看,如下图(图22-11)所示:
ls /dev/device_test
图 22-11
可以看到device_test节点已经被自动创建了,然后使用以下命令运行app.sh脚本,该脚本会指定CPU在加锁之后进入内核休眠状态,如下图(图22-12)所示:
./app.sh
图 22-12
在指令输入之后,串口终端无法输入,引发了死锁,进而造成了系统崩溃,所以在编写驱动的过程中,要尽可能的避免死锁的出现。
至此,自旋锁死锁驱动实验就完成了。
【最新驱动资料(文档+例程)】
链接 https://pan.baidu.com/s/1M4smUG2vw_hnn0Hye-tkog
提取码:hbh6
【B 站配套视频】
https://b23.tv/XqYa6Hm
【RK3568 购买链接】
https://item.taobao.com/item.htm?spm=a1z10.5-c-s.w4002-2245
4222659486)]
图 22-12
在指令输入之后,串口终端无法输入,引发了死锁,进而造成了系统崩溃,所以在编写驱动的过程中,要尽可能的避免死锁的出现。
至此,自旋锁死锁驱动实验就完成了。
【最新驱动资料(文档+例程)】
链接 https://pan.baidu.com/s/1M4smUG2vw_hnn0Hye-tkog
提取码:hbh6
【B 站配套视频】
https://b23.tv/XqYa6Hm
【RK3568 购买链接】
https://item.taobao.com/item.htm?spm=a1z10.5-c-s.w4002-2245
2452613.11.2fec74a6elWNeA&id=669939423234