没搞明白的多重背包

多重背包

对于多重背包,我在力扣上还没发现对应的题目,所以这里就做一下简单介绍,大家大概了解一下。

有N种物品和一个容量为V 的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci ,价值是Wi 。求解将哪些物品装入背包可使这些物品的耗费的空间 总和不超过背包容量,且价值总和最大。

多重背包和01背包是非常像的, 为什么和01背包像呢?

每件物品最多有Mi件可用,把Mi件摊开,其实就是一个01背包问题了。

例如:

背包最大重量为10。

物品为:

重量 价值 数量
物品0 1 15 2
物品1 3 20 3
物品2 4 30 2

问背包能背的物品最大价值是多少?

和如下情况有区别么?

重量 价值 数量
物品0 1 15 1
物品0 1 15 1
物品1 3 20 1
物品1 3 20 1
物品1 3 20 1
物品2 4 30 1
物品2 4 30 1

毫无区别,这就转成了一个01背包问题了,且每个物品只用一次。

这种方式来实现多重背包的代码如下:

void test_multi_pack() {
    vector weight = {1, 3, 4};
    vector value = {15, 20, 30};
    vector nums = {2, 3, 2};
    int bagWeight = 10;
    for (int i = 0; i < nums.size(); i++) {
        while (nums[i] > 1) { // nums[i]保留到1,把其他物品都展开
            weight.push_back(weight[i]);
            value.push_back(value[i]);
            nums[i]--;
        }
    }

    vector dp(bagWeight + 1, 0);
    for(int i = 0; i < weight.size(); i++) { // 遍历物品
        for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
        }
        for (int j = 0; j <= bagWeight; j++) {
            cout << dp[j] << " ";
        }
        cout << endl;
    }
    cout << dp[bagWeight] << endl;

}
int main() {
    test_multi_pack();
}

  • 时间复杂度:O(m × n × k),m:物品种类个数,n背包容量,k单类物品数量

也有另一种实现方式,就是把每种商品遍历的个数放在01背包里面在遍历一遍。

代码如下:(详看注释)

void test_multi_pack() {
    vector weight = {1, 3, 4};
    vector value = {15, 20, 30};
    vector nums = {2, 3, 2};
    int bagWeight = 10;
    vector dp(bagWeight + 1, 0);


    for(int i = 0; i < weight.size(); i++) { // 遍历物品
        for(int j = bagWeight; j >= weight[i]; j--) { // 遍历背包容量
            // 以上为01背包,然后加一个遍历个数
            for (int k = 1; k <= nums[i] && (j - k * weight[i]) >= 0; k++) { // 遍历个数
                dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i]);
            }
        }
        // 打印一下dp数组
        for (int j = 0; j <= bagWeight; j++) {
            cout << dp[j] << " ";
        }
        cout << endl;
    }
    cout << dp[bagWeight] << endl;
}
int main() {
    test_multi_pack();
}
  • 时间复杂度:O(m × n × k),m:物品种类个数,n背包容量,k单类物品数量

从代码里可以看出是01背包里面在加一个for循环遍历一个每种商品的数量。 和01背包还是如出一辙的。

当然还有那种二进制优化的方法,其实就是把每种物品的数量,打包成一个个独立的包。

和以上在循环遍历上有所不同,因为是分拆为各个包最后可以组成一个完整背包,具体原理我就不做过多解释了,大家了解一下就行,面试的话基本不会考完这个深度了,感兴趣可以自己深入研究一波。

# 总结

多重背包在面试中基本不会出现,力扣上也没有对应的题目,大家对多重背包的掌握程度知道它是一种01背包,并能在01背包的基础上写出对应代码就可以了。

至于背包九讲里面还有混合背包,二维费用背包,分组背包等等这些,大家感兴趣可以自己去学习学习,这里也不做介绍了,面试也不会考。

# 其他语言版本

Python:

改变物品数量为01背包格式(无参版)

def test_multi_pack():
    weight = [1, 3, 4]
    value = [15, 20, 30]
    nums = [2, 3, 2]
    bagWeight = 10

    # 将数量大于1的物品展开
    for i in range(len(nums)):
        while nums[i] > 1:
            weight.append(weight[i])
            value.append(value[i])
            nums[i] -= 1

    dp = [0] * (bagWeight + 1)
    for i in range(len(weight)):  # 遍历物品
        for j in range(bagWeight, weight[i] - 1, -1):  # 遍历背包容量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
        for j in range(bagWeight + 1):
            print(dp[j], end=" ")
        print()

    print(dp[bagWeight])


test_multi_pack()

改变遍历个数(无参版)

def test_multi_pack():
    weight = [1, 3, 4]
    value = [15, 20, 30]
    nums = [2, 3, 2]
    bagWeight = 10
    dp = [0] * (bagWeight + 1)

    for i in range(len(weight)):  # 遍历物品
        for j in range(bagWeight, weight[i] - 1, -1):  # 遍历背包容量
            # 以上为01背包,然后加一个遍历个数
            for k in range(1, nums[i] + 1):  # 遍历个数
                if j - k * weight[i] >= 0:
                    dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i])

        # 打印一下dp数组
        for j in range(bagWeight + 1):
            print(dp[j], end=" ")
        print()

    print(dp[bagWeight])


test_multi_pack()

改变物品数量为01背包格式(有参版)

def test_multi_pack(weight, value, nums, bagWeight):
    # 将数量大于1的物品展开
    for i in range(len(nums)):
        while nums[i] > 1:
            weight.append(weight[i])
            value.append(value[i])
            nums[i] -= 1

    dp = [0] * (bagWeight + 1)
    for i in range(len(weight)):  # 遍历物品
        for j in range(bagWeight, weight[i] - 1, -1):  # 遍历背包容量
            dp[j] = max(dp[j], dp[j - weight[i]] + value[i])
        for j in range(bagWeight + 1):
            print(dp[j], end=" ")
        print()

    print(dp[bagWeight])




if __name__ == "__main__":
    weight = [1, 3, 4]
    value = [15, 20, 30]
    nums = [2, 3, 2]
    bagWeight = 10
    test_multi_pack(weight, value, nums, bagWeight)

改变遍历个数(有参版)

def test_multi_pack(weight, value, nums, bagWeight):
    dp = [0] * (bagWeight + 1)

    for i in range(len(weight)):  # 遍历物品
        for j in range(bagWeight, weight[i] - 1, -1):  # 遍历背包容量
            # 以上为01背包,然后加一个遍历个数
            for k in range(1, nums[i] + 1):  # 遍历个数
                if j - k * weight[i] >= 0:
                    dp[j] = max(dp[j], dp[j - k * weight[i]] + k * value[i])

        # 使用 join 函数打印 dp 数组
        print(' '.join(str(dp[j]) for j in range(bagWeight + 1)))

    print(dp[bagWeight])





if __name__ == "__main__":
    weight = [1, 3, 4]
    value = [15, 20, 30]
    nums = [2, 3, 2]
    bagWeight = 10
    test_multi_pack(weight, value, nums, bagWeight)

你可能感兴趣的:(力扣基础150一刷,算法,c++,数据结构,leetcode,动态规划,python)