本章节我们主要结合前面所学的知识点来介绍 Python 数据结构。
Python 中列表是可变的,这是它区别于字符串和元组的最重要的特点,一句话概括即:列表可以修改,而字符串和元组不能修改。
以下是 Python 中列表的方法:
方法 | 描述 |
---|---|
list.append(x) | 把一个元素添加到列表的结尾,相当于 a[len(a):] = [x]。 |
list.extend(L) | 通过添加指定列表的所有元素来扩充列表,相当于 a[len(a):] = L。 |
list.insert(i, x) | 在指定位置插入一个元素。第一个参数是准备插入到其前面的那个元素的索引,例如 a.insert(0, x) 会插入到整个列表之前,而 a.insert(len(a), x) 相当于 a.append(x) 。 |
list.remove(x) | 删除列表中值为 x 的第一个元素。如果没有这样的元素,就会返回一个错误。 |
list.pop([i]) | 从列表的指定位置删除元素,并将其返回。如果没有指定索引,a.pop()返回最后一个元素。元素随即从列表中被删除。(方法中 i 两边的方括号表示这个参数是可选的,而不是要求你输入一对方括号,你会经常在 Python 库参考手册中遇到这样的标记。) |
list.clear() | 移除列表中的所有项,等于del a[:]。 |
list.index(x) | 返回列表中第一个值为 x 的元素的索引。如果没有匹配的元素就会返回一个错误。 |
list.count(x) | 返回 x 在列表中出现的次数。 |
list.sort() | 对列表中的元素进行排序。 |
list.reverse() | 倒排列表中的元素。 |
list.copy() | 返回列表的浅复制,等于a[:]。 |
下面示例演示了列表的大部分方法:
>>> a = [66.25, 333, 333, 1, 1234.5]
>>> print(a.count(333), a.count(66.25), a.count('x'))
2 1 0
>>> a.insert(2, -1)
>>> a.append(333)
>>> a
[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)
1
>>> a.remove(333)
>>> a
[66.25, -1, 333, 1, 1234.5, 333]
>>> a.reverse()
>>> a
[333, 1234.5, 1, 333, -1, 66.25]
>>> a.sort()
>>> a
[-1, 1, 66.25, 333, 333, 1234.5]
注意:类似 insert, remove 或 sort 等修改列表的方法没有返回值。
列表的方法使得列表可以很方便的作为一个堆栈来使用,堆栈作为特定的数据结构,最先进入的元素会最后一个被释放(后进先出)。用 append() 方法可以把一个元素添加到堆栈顶。用不指定索引的 pop() 方法可以把一个元素从堆栈顶释放出来。例如:
>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]
也可以把列表当做队列用,在队列里第一个位置加入的元素,第一个取出来;但是拿列表用作队列效率不高。在列表的最后添加或者弹出元素速度快,然而在列表里插入或者从头部弹出速度却不快(因为所有其他的元素都得一个一个地移动)。
>>> from collections import deque
>>> queue = deque(["Eric", "John", "Michael"])
>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.popleft() # The first to arrive now leaves
'Eric'
>>> queue.popleft() # The second to arrive now leaves
'John'
>>> queue # Remaining queue in order of arrival
deque(['Michael', 'Terry', 'Graham'])
列表推导式提供了从序列创建列表的简单途径。通常应用程序将一些操作应用于某个序列的每个元素,用其获得的结果作为生成新列表的元素,或者根据确定的判定条件创建子序列。
每个列表推导式都在 for 之后跟一个表达式,然后有零到多个 for 或 if 子句。返回结果是一个根据表达从其后的 for 和 if 上下文环境中生成出来的列表。如果希望表达式推导出一个元组,就必须使用括号。
这里我们将列表中每个数值乘三,获得一个新的列表:
>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]
现在我们玩一点小花样:
>>> [[x, x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]
这里我们对序列里每一个元素逐个调用某方法:
>>> freshfruit = [' banana', ' loganberry ', 'passion fruit ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
我们可以用 if 子句作为过滤器:
>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [3*x for x in vec if x < 2] []
以下是一些关于循环和其它技巧的演示:
>>> vec1 = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x*y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vec1 for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]
>>> [vec1[i]*vec2[i] for i in range(len(vec1))]
[8, 12, -54]
列表推导式可以使用复杂表达式或嵌套函数:
>>> [str(round(355/113, i)) for i in range(1, 6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']
Python 的列表还可以嵌套。
以下实例展示了 3 * 4 的矩阵列表:
>>> matrix = [
... [1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12],
... ]
以下实例将 3 * 4 的矩阵列表转换为 4 * 3 列表:
>>> [[row[i] for row in matrix] for i in range(4)]
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
以上实例也可以使用以下方法来实现:
>>> transposed = []
>>> for i in range(4):
... transposed.append([row[i] for row in matrix])
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
另外一种实现方法:
>>> transposed = []
>>> for i in range(4):
... # the following 3 lines implement the nested listcomp
... transposed_row = []
... for row in matrix:
... transposed_row.append(row[i])
... transposed.append(transposed_row)
...
>>> transposed
[[1, 5, 9], [2, 6, 10], [3, 7, 11], [4, 8, 12]]
使用 del 语句可以从一个列表中依照索引(而不是值)来删除一个元素。这与使用 pop() 返回一个值不同。
可以用 del 语句从列表中删除一个切片,或清空整个列表(我们以前介绍的方法是给该切片赋一个空列表)。例如:
>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]
>>> a
[]
也可以用 del 删除实体变量:
>>> del a
元组由若干逗号分隔的值组成,例如:
>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
如你所见,元组在输出时总是有括号的,以便于正确表达嵌套结构。在输入时可能有或没有括号, 不过括号通常是必须的(如果元组是更大的表达式的一部分)。
集合是一个无序不重复元素的集。基本功能包括关系测试和消除重复元素。
可以用大括号 ({}) 创建集合。注意:如果要创建一个空集合,你必须用 set() 而不是 {} ;后者创建一个空的字典,下一节我们会介绍这个数据结构。
以下是一个简单的演示:
>>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
>>> print(basket) # show that duplicates have been removed
{'orange', 'banana', 'pear', 'apple'}
>>> 'orange' in basket # fast membership testing
True
>>> 'crabgrass' in basket
False
>>> # Demonstrate set operations on unique letters from two words
...
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a # unique letters in a
{'a', 'r', 'b', 'c', 'd'}
>>> a - b # letters in a but not in b
{'r', 'd', 'b'}
>>> a | b # letters in either a or b
{'a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'}
>>> a & b # letters in both a and b
{'a', 'c'}
>>> a ^ b # letters in a or b but not both
{'r', 'd', 'b', 'm', 'z', 'l'}
集合也支持推导式:
>>> a = {x for x in 'abracadabra' if x not in 'abc'}
>>> a
{'r', 'd'}
另一个非常有用的 Python 内建数据类型是字典。
序列是以连续的整数为索引,与此不同的是,字典以关键字为索引,关键字可以是任意不可变类型,通常用字符串或数值。
理解字典的最佳方式是把它看做无序的键 => 值对集合。在同一个字典之内,关键字必须是互不相同。
一对大括号创建一个空的字典:{}。
这是一个字典运用的简单例子:
>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> list(tel.keys())
['irv', 'guido', 'jack']
>>> sorted(tel.keys())
['guido', 'irv', 'jack']
>>> 'guido' in tel
True
>>> 'jack' not in tel
False
构造函数 dict() 直接从键值对元组列表中构建字典。如果有固定的模式,列表推导式指定特定的键值对:
>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
{'sape': 4139, 'jack': 4098, 'guido': 4127}
此外,字典推导可以用来创建任意键和值的表达式词典:
>>> {x: x**2 for x in (2, 4, 6)}
{2: 4, 4: 16, 6: 36}
如果关键字只是简单的字符串,使用关键字参数指定键值对有时候更方便:
>>> dict(sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'jack': 4098, 'guido': 4127}
在字典中遍历时,关键字和对应的值可以使用 items() 方法同时解读出来:
>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.items():
... print(k, v)
...
gallahad the pure
robin the brave
在序列中遍历时,索引位置和对应值可以使用 enumerate() 函数同时得到:
>>> for i, v in enumerate(['tic', 'tac', 'toe']):
... print(i, v)
...
0 tic
1 tac
2 toe
同时遍历两个或更多的序列,可以使用 zip() 组合:
>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for q, a in zip(questions, answers):
... print('What is your {0}? It is {1}.'.format(q, a))
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.
要反向遍历一个序列,首先指定这个序列,然后调用 reversed() 函数:
>>> for i in reversed(range(1, 10, 2)):
... print(i)
...
9
7
5
3
1
要按顺序遍历一个序列,使用 sorted() 函数返回一个已排序的序列,并不修改原值:
>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set(basket)):
... print(f)
...
apple
banana
orange
pear
在前面的几个章节中我们脚本上是用 Python 解释器来编程,如果你从 Python 解释器退出再进入,那么你定义的所有的方法和变量就都消失了。
为此 Python 提供了一个办法,把这些定义存放在文件中,为一些脚本或者交互式的解释器实例使用,这个文件被称为模块。
模块是一个包含所有你定义的函数和变量的文件,其后缀名是 .py。模块可以被别的程序引入,以使用该模块中的函数等功能。这也是使用 Python 标准库的方法。下面是一个使用 Python 标准库中模块的例子。
#!/usr/bin/python3
# Filename: using_sys.py
import sys
print('命令行参数如下:')
for i in sys.argv:
print(i)
print('\n\nPython 路径为:', sys.path, '\n')
执行结果如下所示:
$ python using_sys.py 参数1 参数2
命令行参数如下:
using_sys.py
参数1
参数2
Python 路径为: ['/root', '/usr/lib/python3.4', '/usr/lib/python3.4/plat-x86_64-linux-gnu', '/usr/lib/python3.4/lib-dynload', '/usr/local/lib/python3.4/dist-packages', '/usr/lib/python3/dist-packages']
如果要使用 Python 源文件,只需在另一个源文件里执行 import 语句,import 语句语法如下:
import module1[,module2[, ... moduleN]
当解释器遇到 import 语句,如果模块在当前的搜索路径就会被导入。
搜索路径是一个解释器会先进行搜索的所有目录的列表。如果想要导入模块 support,需要把命令放在脚本的顶端:
#!/usr/bin/python3
# Filename: support.py
def print_func( par ):
print ("Hello : ", par)
return
test.py 引入 support 模块:
#!/usr/bin/python3
# Filename: test.py
# 导入模块
import support
# 现在可以调用模块里包含的函数了
support.print_func("w3cschool")
以上实例输出结果:
$ python3 test.py
Hello : w3cschool
一个模块只会被导入一次,不管你执行了多少次 import。这样可以防止导入模块被一遍又一遍地执行。
当我们使用 import 语句的时候,Python 解释器是怎样找到对应的文件的呢?
这就涉及到 Python 的搜索路径,搜索路径是由一系列目录名组成的,Python 解释器就依次从这些目录中去寻找所引入的模块。
这看起来很像环境变量,事实上,也可以通过定义环境变量的方式来确定搜索路径。
搜索路径是在 Python 编译或安装的时候确定的,安装新的库应该也会修改。搜索路径被存储在 sys 模块中的 path 变量,做一个简单的实验,在交互式解释器中,输入以下代码:
>>> import sys
>>> sys.path
['', '/usr/lib/python3.4', '/usr/lib/python3.4/plat-x86_64-linux-gnu', '/usr/lib/python3.4/lib-dynload', '/usr/local/lib/python3.4/dist-packages', '/usr/lib/python3/dist-packages']
>>>
sys.path 输出是一个列表,其中第一项是空串'',代表当前目录(若是从一个脚本中打印出来的话,可以更清楚地看出是哪个目录),亦即我们执行 Python 解释器的目录(对于脚本的话就是运行的脚本所在的目录)。
因此若像我一样在当前目录下存在与要引入模块同名的文件,就会把要引入的模块屏蔽掉。
了解了搜索路径的概念,就可以在脚本中修改 sys.path 来引入一些不在搜索路径中的模块。
现在,在解释器的当前目录或者 sys.path 中的一个目录里面来创建一个 fibo.py 的文件,代码如下:
# 斐波那契数列模块(Fibonacci numbers module)
def fib(n): # 定义到 n 的斐波那契数列
a, b = 0, 1
while b < n:
print(b, end=' ')
a, b = b, a+b
print()
def fib2(n): # 返回到 n 的斐波那契数列
result = []
a, b = 0, 1
while b < n:
result.append(b)
a, b = b, a+b
return result
然后进入 Python 解释器,使用下面的命令导入这个模块:
>>> import fibo
这样做并没有把直接定义在 fibo 中的函数名称写入到当前符号表里,只是把模块 fibo 的名字写到了那里。
可以使用模块名称来访问函数:
>>> fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
'fibo'
如果你打算经常使用一个函数,你可以把它赋给一个本地的名称:
>>> fib = fibo.fib
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377
Python 的 from 语句让你从模块中导入一个指定的部分到当前命名空间中,语法如下:
from modname import name1[, name2[, ... nameN]
例如,要导入模块 fibo 的 fib 函数,使用如下语句:
>>> from fibo import fib, fib2
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377
这个声明不会把整个 fibo 模块导入到当前的命名空间中,它只会将 fibo 里的 fib 函数引入进来。
把一个模块的所有内容全都导入到当前的命名空间也是可行的,只需使用如下声明:
from modname import *
这提供了一个简单的方法来导入一个模块中的所有项目。然而这种声明不该被过多的使用。
模块除了方法定义,还可以包括可执行的代码。这些代码一般用来初始化这个模块。这些代码只有在第一次被导入时才会被执行。
每个模块有各自独立的符号表,在模块内部为所有的函数当作全局符号表来使用。
所以,模块的作者可以放心大胆的在模块内部使用这些全局变量,而不用担心把其他用户的全局变量搞花。
从另一个方面,当你确实知道你在做什么的话,你也可以通过 modname.itemname 这样的表示法来访问模块内的函数。
模块是可以导入其他模块的。在一个模块(或者脚本,或者其他地方)的最前面使用 import 来导入一个模块,当然这只是一个惯例,而不是强制的。被导入的模块的名称将被放入当前操作的模块的符号表中。
还有一种导入的方法,可以使用 import 直接把模块内(函数,变量的)名称导入到当前操作模块。比如:
>>> from fibo import fib, fib2
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377
这种导入的方法不会把被导入的模块的名称放在当前的字符表中(所以在这个例子里面,fibo 这个名称是没有定义的)。
这还有一种方法,可以一次性的把模块中的所有(函数,变量)名称都导入到当前模块的字符表:
>>> from fibo import *
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377
这将把所有的名字都导入进来,但是那些由单一下划线(_)开头的名字不在此例。大多数情况, Python程序员不使用这种方法,因为引入的其它来源的命名,很可能覆盖了已有的定义。
一个模块被另一个程序第一次引入时,其主程序将运行。如果我们想在模块被引入时,模块中的某一程序块不执行,我们可以用 __name__ 属性来使该程序块仅在该模块自身运行时执行。
#!/usr/bin/python3
# Filename: using_name.py
if __name__ == '__main__':
print('程序自身在运行')
else:
print('我来自另一模块')
运行输出如下:
$ python using_name.py 程序自身在运行
$ python
>>> import using_name
我来自另一模块
>>>
说明:
内置的函数 dir() 可以找到模块内定义的所有名称。以一个字符串列表的形式返回:
>>> import fibo, sys
>>> dir(fibo)
['__name__', 'fib', 'fib2']
>>> dir(sys)
['__displayhook__', '__doc__', '__excepthook__', '__loader__', '__name__',
'__package__', '__stderr__', '__stdin__', '__stdout__',
'_clear_type_cache', '_current_frames', '_debugmallocstats', '_getframe',
'_home', '_mercurial', '_xoptions', 'abiflags', 'api_version', 'argv',
'base_exec_prefix', 'base_prefix', 'builtin_module_names', 'byteorder',
'call_tracing', 'callstats', 'copyright', 'displayhook',
'dont_write_bytecode', 'exc_info', 'excepthook', 'exec_prefix',
'executable', 'exit', 'flags', 'float_info', 'float_repr_style',
'getcheckinterval', 'getdefaultencoding', 'getdlopenflags',
'getfilesystemencoding', 'getobjects', 'getprofile', 'getrecursionlimit',
'getrefcount', 'getsizeof', 'getswitchinterval', 'gettotalrefcount',
'gettrace', 'hash_info', 'hexversion', 'implementation', 'int_info',
'intern', 'maxsize', 'maxunicode', 'meta_path', 'modules', 'path',
'path_hooks', 'path_importer_cache', 'platform', 'prefix', 'ps1',
'setcheckinterval', 'setdlopenflags', 'setprofile', 'setrecursionlimit',
'setswitchinterval', 'settrace', 'stderr', 'stdin', 'stdout',
'thread_info', 'version', 'version_info', 'warnoptions']
如果没有给定参数,那么 dir() 函数会罗列出当前定义的所有名称:
>>> a = [1, 2, 3, 4, 5]
>>> import fibo
>>> fib = fibo.fib
>>> dir() # 得到一个当前模块中定义的属性列表
['__builtins__', '__name__', 'a', 'fib', 'fibo', 'sys']
>>> a = 5 # 建立一个新的变量 'a'
>>> dir()
['__builtins__', '__doc__', '__name__', 'a', 'sys']
>>>
>>> del a # 删除变量名a
>>>
>>> dir()
['__builtins__', '__doc__', '__name__', 'sys']
>>>
Python 本身带着一些标准的模块库,在 Python 库参考文档中将会介绍到(就是后面的"库参考文档")。
有些模块直接被构建在解析器里,这些虽然不是一些语言内置的功能,但是他却能很高效的使用,甚至是系统级调用也没问题。
这些组件会根据不同的操作系统进行不同形式的配置,比如 winreg 这个模块就只会提供给 Windows 系统。
应该注意到这有一个特别的模块 sys ,它内置在每一个 Python 解析器中。变量 sys.ps1 和 sys.ps2 定义了主提示符和副提示符所对应的字符串:
>>> import sys
>>> sys.ps1
'>>> '
>>> sys.ps2
'... '
>>> sys.ps1 = 'C> '
C> print('Yuck!')
Yuck!
C>
包是一种管理 Python 模块命名空间的形式,采用"点模块名称"。
比如一个模块的名称是 A.B, 那么他表示一个包 A 中的子模块 B 。
就好像使用模块的时候,你不用担心不同模块之间的全局变量相互影响一样,采用点模块名称这种形式也不用担心不同库之间的模块重名的情况。
这样不同的作者都可以提供 NumPy 模块,或者是 Python 图形库。
不妨假设你想设计一套统一处理声音文件和数据的模块(或者称之为一个"包")。
现存很多种不同的音频文件格式(基本上都是通过后缀名区分的,例如: .wav,:file:.aiff,:file:.au,),所以你需要有一组不断增加的模块,用来在不同的格式之间转换。
并且针对这些音频数据,还有很多不同的操作(比如混音,添加回声,增加均衡器功能,创建人造立体声效果),所以你还需要一组怎么也写不完的模块来处理这些操作。
这里给出了一种可能的包结构(在分层的文件系统中):
sound/ 顶层包
__init__.py 初始化 sound 包
formats/ 文件格式转换子包
__init__.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py
...
effects/ 声音效果子包
__init__.py
echo.py
surround.py
reverse.py
...
filters/ filters 子包
__init__.py
equalizer.py
vocoder.py
karaoke.py
...
在导入一个包的时候,Python 会根据 sys.path 中的目录来寻找这个包中包含的子目录。
目录只有包含一个叫做 __init__.py 的文件才会被认作是一个包,主要是为了避免一些滥俗的名字(比如叫做 string)不小心的影响搜索路径中的有效模块。
最简单的情况,放一个空的 :file:__init__.py 就可以了。当然这个文件中也可以包含一些初始化代码或者为(将在后面介绍的) __all__变量赋值。
用户可以每次只导入一个包里面的特定模块,比如:
import sound.effects.echo
这将会导入子模块: mod:song.effects.echo。 他必须使用全名去访问:
sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)
还有一种导入子模块的方法是:
from sound.effects import echo
这同样会导入子模块 echo ,并且他不需要那些冗长的前缀,所以他可以这样使用:
echo.echofilter(input, output, delay=0.7, atten=4)
还有一种变化就是直接导入一个函数或者变量:
from sound.effects.echo import echofilter
同样的,这种方法会导入子模块 echo ,并且可以直接使用他的 echofilter() 函数:
echofilter(input, output, delay=0.7, atten=4)
注意当使用 from package import item 这种形式的时候,对应的 item 既可以是包里面的子模块(子包),或者包里面定义的其他名称,比如函数,类或者变量。
import语法会首先把item当作一个包定义的名称,如果没找到,再试图按照一个模块去导入。如果还没找到,恭喜,一个 : exc:ImportError 异常被抛出了。
反之,如果使用形如 import item.subitem.subsubitem 这种导入形式,除了最后一项,都必须是包,而最后一项则可以是模块或者是包,但是不可以是类,函数或者变量的名字。
设想一下,如果我们使用 from sound.effects import *会发生什么?
Python 会进入文件系统,找到这个包里面所有的子模块,一个一个的把它们都导入进来。
但是很不幸,这个方法在 Windows平台上工作的就不是非常好,因为 Windows 是一个大小写不区分的系统。
在这类平台上,没有人敢担保一个叫做 ECHO.py 的文件导入为模块 echo 还是 Echo 甚至 ECHO 。
(例如,Windows 95就很讨厌的把每一个文件的首字母大写显示)而且 DOS 的 8+3 命名规则对长模块名称的处理会把问题搞得更纠结。
为了解决这个问题,只能烦劳包作者提供一个精确的包的索引了。
导入语句遵循如下规则:如果包定义文件 __init__.py 存在一个叫做 __all__ 的列表变量,那么在使用 from package import * 的时候就把这个列表中的所有名字作为包内容导入。
作为包的作者,可别忘了在更新包之后保证 __all__ 也更新了啊。你说我就不这么做,我就不使用导入*这种用法,好吧,没问题,谁让你是老板呢。这里有一个例子,在 :file:sounds/effects/__init__.py
中包含如下代码:
__all__ = ["echo", "surround", "reverse"]
这表示当你使用 from sound.effects import * 这种用法时,你只会导入包里面这三个子模块。
如果 __all__ 没有定义,那么使用 from sound.effects import * 这种语法的时候,就不会导入包 sound.effects 里的任何子模块。他只是把包 sound.effects 和它里面定义的所有内容导入进来(可能运行 __init__.py 里定义的初始化代码)。
这会把 __init__.py 里面定义的所有名字导入进来。并且他不会破坏掉我们在这句话之前导入的所有明确指定的模块。看下这部分代码:
import sound.effects.echo
import sound.effects.surround
from sound.effects import *
这个例子中,在执行 from...import 前,包 sound.effects 中的 echo 和 surround 模块都被导入到当前的命名空间中了。(当然如果定义了__all__ 就更没问题了)
通常我们并不主张使用*这种方法来导入模块,因为这种方法经常会导致代码的可读性降低。不过这样倒的确是可以省去不少敲键的功夫,而且一些模块都设计成了只能通过特定的方法导入。
记住,使用 from Package import specific_submodule 这种方法永远不会有错。事实上,这也是推荐的方法。除非是你要导入的子模块有可能和其他包的子模块重名。
如果在结构中包是一个子包(比如这个例子中对于包 sound 来说),而你又想导入兄弟包(同级别的包)你就得使用导入绝对的路径来导入。比如,如果模块 sound.filters.vocoder 要使用包 sound.effects 中的模块 echo ,你就要写成 from sound.effects import echo。
from . import echo
from .. import formats
from ..filters import equalizer
无论是隐式的还是显式的相对导入都是从当前模块开始的。主模块的名字永远是 "__main__",一个Python应用程序的主模块,应当总是使用绝对路径引用。
包还提供一个额外的属性 __path__ 。这是一个目录列表,里面每一个包含的目录都有为这个包服务的 __init__.py ,你得在其他 __init__.py 被执行前定义哦。可以修改这个变量,用来影响包含在包里面的模块和子包。
这个功能并不常用,一般用来扩展包里面的模块。