协程是一种并发设计模式,您可以在 Android 平台上使用它来简化异步执行的代码。协程是一段可以挂起的代码,协程可以看作是轻量级的线程。
协程与线程的关系:
(1)一个线程中可以创建任意个协程;
(2)协程的执行、挂起、恢复等依赖于线程,但是协程挂起时不需要阻塞线程;
(3)协程不一定要指定某个线程,即协程可以在一个线程中挂起,然后在另外一个线程中恢复;
每一个suspend修饰的方法或者lambda表达式都会在编译后,为其额外添加Continuation类型的参数,同时返回了Any?类型。这个Continuation对象通过类似回调的方式管理协程的挂起和恢复。Continuation定义如下:
/**
* Interface representing a continuation after a suspension point that returns a value of type `T`.
*/
@SinceKotlin("1.3")
public interface Continuation<in T> {
/**
* The context of the coroutine that corresponds to this continuation.
*/
public val context: CoroutineContext
/**
* Resumes the execution of the corresponding coroutine passing a successful or failed [result] as the
* return value of the last suspension point.
*/
public fun resumeWith(result: Result<T>)
}
当suspend函数被协程挂起时,它会返回一个特殊的标识COROUTINE_SUSPENDED,而它本质就是一个Any;当协程不挂起进行执行时,它将返回执行的结果或者引发的异常。这样为了让这两种情况的返回都支持,所以使用了Kotlin独有的Any?类型。
(1)占用空间小
每个线程都有自己的堆栈,通常为1MB。JVM中每个线程允许的最小堆栈空间是64k,而Kotlin中的一个简单协程只占用几十字节的堆内存。但是协程依赖的Dispatchers有线程数量的限制。
(2)挂起恢复代价小
通过一个类似回调的对象Continuation将协程管理为挂起和恢复,该对象Continuation作为最后一个参数添加到编译时标记为suspend关键字的函数中,该函数与其他对象一样位于堆中,负责恢复协程,因此,RAM中不需要数千MB的空间来保持所有线程的活动。一个典型的60-70线程是使用CommonPool在max处创建的,并且被重用(如果创建了新的协程,它将等待另一个线程完成)。
首先,在project的build.gradle中添加对kotlin插件的依赖
buildscript {
ext.kotlin_version = '1.5.0'
dependencies {
classpath "org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version"
}
}
然后,在module中依赖kotlin标准库和kotlin coroutine:
apply plugin: 'kotlin-android'
dependencies {
// kotlin标准库
implementation "org.jetbrains.kotlin:kotlin-stdlib:$kotlin_version"
// kotlin coroutine
implementation 'org.jetbrains.kotlinx:kotlinx-coroutines-android:1.5.0-RC'
}
// launch是协程的builder,它启动了一个协程,这个协程可独立运行
GlobalScope.launch {
// 挂起当前协程;delay是一个挂起函数:public suspend fun delay(timeMillis: Long);协程的挂起不会阻塞当前线程;
delay(1000)
Log.d("CoroutineTag", "Kotlin Coroutines World!")
}
Log.d("CoroutineTag", "hello")
运行结果如下:
>hello
>Kotlin Coroutines World!
在2.2的代码中,GlobalScope是CoroutineScope的一个实例;launch是CoroutineScope的扩展函数,用来启动协程,扩展函数定义如下:
/**
* 启动一个新的协程,并把该协程以Job形式返回;
* 可通过Job的start()、cancle()、join()等方法控制该协程的执行;
*
* 接收三个参数
* @param context 协程上下文
* @param start 协程启动方式,默认值是CoroutineStart.DEFAULT
* @param block 需要被调用的挂起函数
* @return job 以Job形式返回新创建的协程
**/
public fun CoroutineScope.launch(
context: CoroutineContext = EmptyCoroutineContext,
start: CoroutineStart = CoroutineStart.DEFAULT,
block: suspend CoroutineScope.() -> Unit
): Job {
val newContext = newCoroutineContext(context)
val coroutine = if (start.isLazy)
LazyStandaloneCoroutine(newContext, block) else
StandaloneCoroutine(newContext, active = true)
// 参数中传递的挂起函数,在这里被执行了
coroutine.start(start, coroutine, block)
return coroutine
}
下面分别分析CoroutineScope、CoroutineScope.launch()、CoroutineContext、CoroutineStart来介绍协程机制。
Coroutine Scope即协程作用域,是协程运行的作用范围;每个异步操作都在特定范围内运行。其定义如下:
/**
* CoroutineScope定义了协程作用范围;
* 通过CoroutineScope.launch或CoroutineScope.aync创建一个新的CoroutineScope并启动一个新的协程时,新的CoroutineScope会同时继承外部CoroutineScope的coroutineContext;
*/
public interface CoroutineScope {
public val coroutineContext: CoroutineContext
}
使用合适的CoroutineScope,并在合适的时机销毁,避免内存泄漏。例如在Activity销毁时取消CoroutineScope内的协程,避免内存泄漏;
创建CoroutineScope的方式:
(1)CoroutineScope();通用的CoroutineScope();
(2)MainScope();作用域为UI生命周期,默认调度器为Dispatchers.Main;如下所示:
class MyAndroidActivity {
private val scope = MainScope()
override fun onDestroy() {
super.onDestroy()
scope.cancel()
}
}
以下介绍常见的CoroutineScope及会创建CoroutineScope的场景:
GlobalScope作用域中的协程在App启动后可一直执行至该协程执行结束或取消,常用来启动一些需要在application生命周期内运行且不能提前取消的顶级协程。
对于一些Activity或Fragment销毁后就不在需要执行的协程,不建议使用GlobalScope来启动。
GlobalScope.launch {
Log.d("CoroutineTag", "GlobalScope")
launch {
// 协程内的this即CoroutineScope
Log.d("CoroutineTag", "coroutineScope")
}
}
通过CoroutineScope.launch的无参启动方式,会创建一个CoroutineScope,这个CoroutineScope继承了外面CoroutineScope的CoroutineContext。
GlobalScope.launch {
Log.d("CoroutineTag", "GlobalScope")
async {
// 协程内的this即CoroutineScope
Log.d("CoroutineTag", "coroutineScope")
}
}
通过CoroutineScope.async的无参启动方式,会创建一个CoroutineScope,这个CoroutineScope继承了外面CoroutineScope的CoroutineContext。
CoroutineScope.async与CoroutineScope.launch的区别在于,async方式返回Deferred,可以获取协程的执行结果。
在其他协程或挂起函数内,可通过coroutineScope来创建一个CoroutineScope,并且会立即执行coroutineScope{}内新建的协程,如下所示:
GlobalScope.launch {
Log.d("CoroutineTag", "GlobalScope")
coroutineScope {
// 协程内的this即CoroutineScope
Log.d("CoroutineTag", "coroutineScope")
}
}
coroutineScope是一个挂起挂起函数,所以只能在协程或挂起函数内调用:
public suspend fun <R> coroutineScope(block: suspend CoroutineScope.() -> R): R {
contract {
callsInPlace(block, InvocationKind.EXACTLY_ONCE)
}
return suspendCoroutineUninterceptedOrReturn { uCont ->
val coroutine = ScopeCoroutine(uCont.context, uCont)
coroutine.startUndispatchedOrReturn(coroutine, block)
}
}
在线程、协程、挂起函数内,可通过runBlocking创建一个CoroutineScope,并且会立即执行runBlocking{}内新建的协程,如下所示:
GlobalScope.launch {
Log.d("CoroutineTag", "GlobalScope")
runBlocking {
// 协程内的this即CoroutineScope
Log.d("CoroutineTag", "coroutineScope")
}
}
与coroutineScope不同的是,runBlocking会阻塞当前线程;runBlocking是一个普通方法,所以runBlocking可以在线程中调用:
/**
* @param block 挂起函数,返回结果T就是协程的返回结果
*/
public fun <T> runBlocking(context: CoroutineContext = EmptyCoroutineContext, block: suspend CoroutineScope.() -> T): T {
contract {
callsInPlace(block, InvocationKind.EXACTLY_ONCE)
}
val currentThread = Thread.currentThread()
val contextInterceptor = context[ContinuationInterceptor]
val eventLoop: EventLoop?
val newContext: CoroutineContext
if (contextInterceptor == null) {
// create or use private event loop if no dispatcher is specified
eventLoop = ThreadLocalEventLoop.eventLoop
newContext = GlobalScope.newCoroutineContext(context + eventLoop)
} else {
// See if context's interceptor is an event loop that we shall use (to support TestContext)
// or take an existing thread-local event loop if present to avoid blocking it (but don't create one)
eventLoop = (contextInterceptor as? EventLoop)?.takeIf { it.shouldBeProcessedFromContext() }
?: ThreadLocalEventLoop.currentOrNull()
newContext = GlobalScope.newCoroutineContext(context)
}
val coroutine = BlockingCoroutine<T>(newContext, currentThread, eventLoop)
coroutine.start(CoroutineStart.DEFAULT, coroutine, block)
return coroutine.joinBlocking()
}
参考:https://developer.android.com/topic/libraries/architecture/coroutines#lifecyclescope
对于MVVM架构,KTX提供了LifecycleOwner、LiveData、ViewModel对应的CoroutineScope;使用方法如下:
(1)添加依赖
dependencies {
// ViewModelScope
implementation "androidx.lifecycle:lifecycle-viewmodel-ktx:2.2.0"
// LifecycleScope
implementation "androidx.lifecycle:lifecycle-runtime-ktx:2.2.0"
// liveData
implementation "androidx.lifecycle:lifecycle-livedata-ktx:2.2.0"
}
(2)用法示例
// 1.viewModelScope
class MyViewModel: ViewModel() {
init {
viewModelScope.launch {
// Coroutine that will be canceled when the ViewModel is cleared.
}
}
}
// 2.lifecycleScope
class MyFragment: Fragment() {
override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
super.onViewCreated(view, savedInstanceState)
viewLifecycleOwner.lifecycleScope.launch {
val params = TextViewCompat.getTextMetricsParams(textView)
val precomputedText = withContext(Dispatchers.Default) {
PrecomputedTextCompat.create(longTextContent, params)
}
TextViewCompat.setPrecomputedText(textView, precomputedText)
}
}
}
coroutine builder协程的启动方式有几种:
启动一个协程但不会阻塞调用线程,必须在协程作用域CoroutineScope中才能调用,返回Job表示该新建的协程。
public fun CoroutineScope.launch(
context: CoroutineContext = EmptyCoroutineContext,
start: CoroutineStart = CoroutineStart.DEFAULT,
block: suspend CoroutineScope.() -> Unit
): Job {
val newContext = newCoroutineContext(context)
val coroutine = if (start.isLazy)
LazyStandaloneCoroutine(newContext, block) else
StandaloneCoroutine(newContext, active = true)
coroutine.start(start, coroutine, block)
return coroutine
}
启动一个协程但不会阻塞调用线程,必须在协程作用域CoroutineScope中才能调用。返回Deferred表示该新建的协程。Deferred是Job的子接口。
public fun <T> CoroutineScope.async(
context: CoroutineContext = EmptyCoroutineContext,
start: CoroutineStart = CoroutineStart.DEFAULT,
block: suspend CoroutineScope.() -> T
): Deferred<T> {
val newContext = newCoroutineContext(context)
val coroutine = if (start.isLazy)
LazyDeferredCoroutine(newContext, block) else
DeferredCoroutine<T>(newContext, active = true)
coroutine.start(start, coroutine, block)
return coroutine
}
CoroutineScope.async与CoroutineScope.launch的区别在于,async方式返回Deferred,可以获取协程的执行结果。
指定一个CoroutineContext,并启动一个协程,使用方式如下:
GlobalScope.launch {
withContext(Dispatchers.Default) {
}
withContext是一个挂起函数,只能在其他协程或挂起函数内调用:
public suspend fun <T> withContext(
context: CoroutineContext,
block: suspend CoroutineScope.() -> T
): T {
contract {
callsInPlace(block, InvocationKind.EXACTLY_ONCE)
}
return suspendCoroutineUninterceptedOrReturn sc@ { uCont ->
// compute new context
val oldContext = uCont.context
val newContext = oldContext + context
// always check for cancellation of new context
newContext.checkCompletion()
// FAST PATH #1 -- new context is the same as the old one
if (newContext === oldContext) {
val coroutine = ScopeCoroutine(newContext, uCont)
return@sc coroutine.startUndispatchedOrReturn(coroutine, block)
}
// FAST PATH #2 -- the new dispatcher is the same as the old one (something else changed)
// `equals` is used by design (see equals implementation is wrapper context like ExecutorCoroutineDispatcher)
if (newContext[ContinuationInterceptor] == oldContext[ContinuationInterceptor]) {
val coroutine = UndispatchedCoroutine(newContext, uCont)
// There are changes in the context, so this thread needs to be updated
withCoroutineContext(newContext, null) {
return@sc coroutine.startUndispatchedOrReturn(coroutine, block)
}
}
// SLOW PATH -- use new dispatcher
val coroutine = DispatchedCoroutine(newContext, uCont)
coroutine.initParentJob()
block.startCoroutineCancellable(coroutine, coroutine)
coroutine.getResult()
}
}
如3.2所示,coroutineScope{}会创建一个CoroutineScope{},并执行{}内新建的协程,不会阻塞当前线程。
启动一个新的协程并阻塞调用它的线程,会把挂起函数的结果作为协程的结果返回,常用来main方法和测试(所以Android开发中不常用)。
启动一个新的协程,并生产一系列数据到channel中,这个协程返回ReceiveChannel,其他协程可从ReceiveChannel中接受数据。
CoroutineContext是一系列元素的集合,主要的元素是代表协程的Job,此外还有协程的dispatcher等(Job、Dispatchers与CoroutineName都实现了Element接口)。
CoroutineScope封装了CoroutineContext:
public interface CoroutineScope {
public val coroutineContext: CoroutineContext
}
当通过CoroutineScope.launch启动一个新的协程时,新的CoroutineScope继承了外面的CoroutineContext,并且新的协程Job成为了父协程的子Job,这样当父Job取消时会递归取消子Job。
public fun CoroutineScope.launch(
context: CoroutineContext = EmptyCoroutineContext,
start: CoroutineStart = CoroutineStart.DEFAULT,
block: suspend CoroutineScope.() -> Unit
): Job {
val newContext = newCoroutineContext(context)
val coroutine = if (start.isLazy)
LazyStandaloneCoroutine(newContext, block) else
StandaloneCoroutine(newContext, active = true)
coroutine.start(start, coroutine, block)
return coroutine
}
以下两种情况不会取消Job除外:
(1)GlobalScope.launch启动的协程;
(2)launch中传递了特定的父Job;
一些情况下,我们需要自定义CoroutineContext中的元素,可以使用+来组合CoroutineContext中的各个元素:
launch(Dispatchers.Default + CoroutineName("test")) {
println("I'm working in thread ${Thread.currentThread().name}")
}
CoroutineScope.launch()方式创建协程的启动方式默认为CoroutineStart.DEFAULT,即立即执行。
通过设置CoroutineStart.LAZY的协程不会立即执行,需要手动调用start()后才开始执行。可通过如下方式设置启动方式为CoroutineStart.LAZY:
val job = launch(start = CoroutineStart.LAZY) {
// ...
}
// 手动调用start
job.start()
CoroutineScope.launch 函数返回的是一个 Job 对象,代表一个异步的任务。可通过Job的start()、cancle()、join()等方法控制该协程的执行。
val startTime = System.currentTimeMillis()
val job = launch(Dispatchers.Default) {
var nextPrintTime = startTime
var i = 0
while (isActive) { // cancellable computation loop
// print a message twice a second
if (System.currentTimeMillis() >= nextPrintTime) {
println("job: I'm sleeping ${i++} ...")
nextPrintTime += 500L
}
}
}
delay(1300L) // delay a bit
println("main: I'm tired of waiting!")
job.cancelAndJoin() // cancels the job and waits for its completion
println("main: Now I can quit.")```
输出结果如下:
```shell
Hello
World!
Done
可见,等job执行完成后,才会继续输出"Done"。
一个CoroutineContext中只有一个Job,可通过如下方式获取当前CoroutineContext中的Job:
println("My job is ${coroutineContext[Job]}")
输出结果是:
My job is "coroutine#1":BlockingCoroutine{Active}@6d311334
Job 具有生命周期并且可以取消。 Job 还可以有层级关系,一个Job可以包含多个子Job,当父Job被取消后,所有的子Job也会被自动取消;当子Job被取消或者出现异常后父Job也会被取消。
/**
* A background job.
*
* ### Job实例化方法
* The most basic instances of `Job` interface are created like this:
* (1)Coroutine job is created with [launch][CoroutineScope.launch] coroutine builder.
* It runs a specified block of code and completes on completion of this block.
* (2)CompletableJob is created with a `Job()` factory function.
* It is completed by calling [CompletableJob.complete].
*
* ### Job states Job状态
* A job has the following states:
*
* | **State** | [isActive] | [isCompleted] | [isCancelled] |
* | -------------------------------- | ---------- | ------------- | ------------- |
* | _New_ (optional initial state) | `false` | `false` | `false` |
* | _Active_ (default initial state) | `true` | `false` | `false` |
* | _Completing_ (transient state) | `true` | `false` | `false` |
* | _Cancelling_ (transient state) | `false` | `false` | `true` |
* | _Cancelled_ (final state) | `false` | `true` | `true` |
* | _Completed_ (final state) | `false` | `true` | `false` |
*
*/
suspend修饰的函数叫挂起函数,只能在协程内部或者另一个挂起函数内调用,如下所示;
suspend fun doSomethingUsefulOne(): Int {
delay(1000L) // pretend we are doing something useful here
return 13
}
suspend fun doSomethingUsefulTwo(): Int {
delay(1000L) // pretend we are doing something useful here, too
return 29
}
挂起函数是顺序执行的,如下所示:
val time = measureTimeMillis {
val one = doSomethingUsefulOne()
val two = doSomethingUsefulTwo()
println("The answer is ${one + two}")
}
println("Completed in $time ms")
结果如下:
The answer is 42
Completed in 2017 ms
使用sync来异步执行挂起函数,代码如下:
val time = measureTimeMillis {
val one = async { doSomethingUsefulOne() }
val two = async { doSomethingUsefulTwo() }
println("The answer is ${one.await() + two.await()}")
}
println("Completed in $time ms")
结果如下:
The answer is 42
Completed in 1017 ms
val time = measureTimeMillis {
val one = async(start = CoroutineStart.LAZY) { doSomethingUsefulOne() }
val two = async(start = CoroutineStart.LAZY) { doSomethingUsefulTwo() }
// some computation
one.start() // start the first one
two.start() // start the second one
println("The answer is ${one.await() + two.await()}")
}
println("Completed in $time ms")
结果如下:
The answer is 42
Completed in 1017 ms
Coroutine使用CoroutineDispatcher来调度协程在哪个线程执行;CoroutineDispatcher实现了CoroutineContext接口,使用方式如下:
GlobalScope.launch {
launch { // context of the parent, main runBlocking coroutine
println("main runBlocking : I'm working in thread ${Thread.currentThread().name}")
}
launch(Dispatchers.Unconfined) { // not confined -- will work with main thread
println("Unconfined : I'm working in thread ${Thread.currentThread().name}")
}
launch(Dispatchers.Default) { // will get dispatched to DefaultDispatcher
println("Default : I'm working in thread ${Thread.currentThread().name}")
}
launch(newSingleThreadContext("MyOwnThread")) { // will get its own new thread
println("newSingleThreadContext: I'm working in thread ${Thread.currentThread().name}")
}
// 其他启动过协程的方式也可以指定Dispatcher
async(Dispatchers.Default) {
}
withContext(Dispatchers.Default) {
}
}
运行结果如下:
Unconfined : I'm working in thread main
Default : I'm working in thread DefaultDispatcher-worker-1
newSingleThreadContext: I'm working in thread MyOwnThread
main runBlocking : I'm working in thread main
下面列举了CoroutineDispatcher常见的几种模式:
launch或aync启动协程时的默认值,内部使用线程池实现;Dispatchers.Default限制处理器上的内核数(2、4、6、8等);
在主线程中执行协程;
在IO线程执行协程,一般用于执行网络或者I/O操作,与Dispatchers.Default共享线程池;Dispatchers.IO限制最多64个线程;
Dispatchers.Unconfined不能创建新线程,使用这种调度方式的协程的执行、恢复都在当前线程进行;
协程间数据通信方式:
(1)CoroutineScope.async返回的Deferred表示协程的执行结果,协程间单个value的传递可使用这种方式;
(2)channels用来在协程间传递一系列value。
Channel类似BlockingQueue,不同的地方在于BlockingQueue.put()及BlockingQueue.take会阻塞,而channel.send()和channel.receive不会阻塞。
val channel = Channel<Int>()
launch {
// this might be heavy CPU-consuming computation or async logic, we'll just send five squares
for (x in 1..5) channel.send(x * x)
}
// here we print five received integers:
repeat(5) { println(channel.receive()) }
println("Done!")
运行结果为:
1
4
9
16
25
Done!
欢迎关注我,一起解锁更多技能:BC的掘金主页~ BC的CSDN主页~
官方文档:https://developers.google.com/protocol-buffers/
protobuf github:https://github.com/protocolbuffers/protobuf/tree/master/java
官方文档:https://kotlinlang.org/docs/coroutines-overview.html
github地址:https://github.com/Kotlin/kotlinx.coroutines
协程例子:https://play.kotlinlang.org/hands-on/Introduction%20to%20Coroutines%20and%20Channels/01_Introduction