在所有的表引擎中,最为核心的当属MergeTree
系列表引擎,这些表引擎拥有最为强大的性能和最广泛的使用场合。对于非MergeTree
系列的其他引擎而言,主要用于特殊用途,场景相对有限。而MergeTree
系列表引擎是官方主推的存储引擎,支持几乎所有ClickHouse
核心功能。
MergeTree
在写入一批数据时,数据总会以数据片段的形式写入磁盘,且数据片段不可修改。为了避免片段过多,ClickHouse
会通过后台线程,定期合并这些数据片段,属于相同分区的数据片段会被合成一个新的片段。这种数据片段往复合并
的特点,也正是合并树名称的由来。
MergeTree
作为家族系列最基础的表引擎,主要有以下特点:
稀疏索引
,从而加快数据查询速度PRIMARY KEY语句
指定分区字段。数据采样
CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1] [TTL expr1],
name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2] [TTL expr2],
...
INDEX index_name1 expr1 TYPE type1(...) GRANULARITY value1,
INDEX index_name2 expr2 TYPE type2(...) GRANULARITY value2
) ENGINE = MergeTree()
ORDER BY expr
[PARTITION BY expr]
[PRIMARY KEY expr]
[SAMPLE BY expr]
[TTL expr [DELETE|TO DISK 'xxx'|TO VOLUME 'xxx'], ...]
[SETTINGS name=value, ...]
ENGINE = MergeTree()
,MergeTree
引擎没有参数ORDER BY (Col1, Col2)
,值得注意的是,如果没有指定主键,默认情况下 sorting key(排序字段)
即为主键。如果不需要排序,则可以使用ORDER BY tuple()语法,这样的话,创建的表也就不包含主键。这种情况下,ClickHouse会按照插入的顺序存储数据。必选
。SAMPLE BY intHash32(UserID) ORDER BY (CounterID, EventDate, intHash32(UserID))
。可选。MergeTree
中,可以为某个列字段或整张表设置TTL
。当时间到达时,如果是列字段级别的TTL
,则会删除这一列的数据;如果是表级别的TTL
,则会删除整张表的数据。可选。CREATE TABLE emp_mergetree
(
emp_id UInt16 COMMENT '员工id',
name String COMMENT '员工姓名',
work_place String COMMENT '工作地点',
age UInt8 COMMENT '员工年龄',
depart String COMMENT '部门',
salary Decimal32(2) COMMENT '工资'
) ENGINE = MergeTree() ORDER BY emp_id PARTITION BY work_place;
INSERT INTO emp_mergetree VALUES (1,'tom','上海',25,'技术部',20000),(2,'jack','上海',26,'人事部',10000);
INSERT INTO emp_mergetree VALUES (3,'bob','北京',33,'财务部',50000),(4,'tony','杭州',28,'销售事部',50000);
-- 按work_place进行分区
select * from emp_mergetree;
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart─┬───salary─┐
│ 1 │ tom │ 上海 │ 25 │ 技术部 │ 20000.00 │
│ 2 │ jack │ 上海 │ 26 │ 人事部 │ 10000.00 │
└────────┴──────┴────────────┴─────┴────────┴──────────┘
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart───┬───salary─┐
│ 4 │ tony │ 杭州 │ 28 │ 销售事部 │ 50000.00 │
└────────┴──────┴────────────┴─────┴──────────┴──────────┘
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart─┬───salary─┐
│ 3 │ bob │ 北京 │ 33 │ 财务部 │ 50000.00 │
└────────┴──────┴────────────┴─────┴────────┴──────────┘
查看一下数据存储格式,可以看出,存在三个分区文件夹,每一个分区文件夹内存储了对应分区的数据。
[root@mypc01 ~]# ll /data/clickhouse/clickhousedata/data/default/emp_mergetree/
总用量 16
drwxr-x---. 2 root root 4096 1月 13 11:31 1c89a3ba9fe5fd53379716a776c5ac34_3_3_0
drwxr-x---. 2 root root 4096 1月 13 11:31 40d45822dbd7fa81583d715338929da9_1_1_0
drwxr-x---. 2 root root 4096 1月 13 11:31 a6155dcc1997eda1a348cd98b17a93e9_2_2_0
drwxr-x---. 2 root root 6 1月 13 11:31 detached
-rw-r-----. 1 root root 1 1月 13 11:31 format_version.txt
进入一个分区目录查看
-rw-r-----. 1 root root 27 1月 13 11:31 age.bin
-rw-r-----. 1 root root 48 1月 13 11:31 age.mrk2
-rw-r-----. 1 root root 591 1月 13 11:31 checksums.txt
-rw-r-----. 1 root root 138 1月 13 11:31 columns.txt
-rw-r-----. 1 root root 1 1月 13 11:31 count.txt
-rw-r-----. 1 root root 39 1月 13 11:31 depart.bin
-rw-r-----. 1 root root 48 1月 13 11:31 depart.mrk2
-rw-r-----. 1 root root 28 1月 13 11:31 emp_id.bin
-rw-r-----. 1 root root 48 1月 13 11:31 emp_id.mrk2
-rw-r-----. 1 root root 14 1月 13 11:31 minmax_work_place.idx
-rw-r-----. 1 root root 31 1月 13 11:31 name.bin
-rw-r-----. 1 root root 48 1月 13 11:31 name.mrk2
-rw-r-----. 1 root root 7 1月 13 11:31 partition.dat
-rw-r-----. 1 root root 4 1月 13 11:31 primary.idx
-rw-r-----. 1 root root 30 1月 13 11:31 salary.bin
-rw-r-----. 1 root root 48 1月 13 11:31 salary.mrk2
-rw-r-----. 1 root root 33 1月 13 11:31 work_place.bin
-rw-r-----. 1 root root 48 1月 13 11:31 work_place.mrk2
checksums.txt:校验文件,使用二进制格式存储。它保存了余下各类文件(primary. idx、count.txt等)的size
大小及size
的哈希值,用于快速校验文件的完整性和正确性。
columns.txt:列信息文件,使用明文格式
存储。用于保存此数据分区下的列字段信息,例如
[root@node1 ~]# cat /data/clickhouse/clickhousedata/data/default/emp_mergetree/1c89a3ba9fe5fd53379716a776c5ac34_3_3_0/columns.txt
columns format version: 1
6 columns:
`emp_id` UInt16
`name` String
`work_place` String
`age` UInt8
`depart` String
`salary` Decimal(9, 2)
count.txt:计数文件,使用明文格式存储。用于记录当前数据分区
目录下数据的总行数
primary.idx:一级索引文件,使用二进制格式存储。用于存放稀疏索引
,一张MergeTree
表只能声明一次一级索引,即通过ORDER BY或者PRIMARY KEY指定字段。借助稀疏索引,在数据查询的时能够排除主键条件范围之外的数据文件,从而有效减少数据扫描范围,加速查询速度。
列.bin:数据文件,使用压缩格式存储,默认为LZ4
压缩格式,用于存储某一列的数据。由于MergeTree
采用列式存储,所以每一个列字段都拥有独立的.bin
数据文件,并以列字段名称命名。
列.mrk2:列字段标记文件,使用二进制格式存储。标记文件中保存了.bin
文件中数据的偏移量
信息
partition.dat与minmax_[Column].idx:如果指定了分区键,则会额外生成partition.dat与minmax索引文件,它们均使用二进制格式存储。partition.dat用于保存当前分区下分区表达式最终生成的值,即分区字段值;而minmax索引用于记录当前分区下分区字段对应原始数据的最小和最大值。比如当使用EventTime字段对应的原始数据为2020-09-17、2020-09-30,分区表达式为PARTITION BY toYYYYMM(EventTime),即按月分区。partition.dat中保存的值将会是2019-09,而minmax索引中保存的值将会是2020-09-17 2020-09-30。
-- 新插入两条数据
INSERT INTO emp_mergetree VALUES (5,'robin','北京',35,'财务部',50000),(6,'lilei','北京',38,'销售事部',50000);
-- 查询结果
select * from emp_mergetree;
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart─┬───salary─┐
│ 3 │ bob │ 北京 │ 33 │ 财务部 │ 50000.00 │
└────────┴──────┴────────────┴─────┴────────┴──────────┘
┌─emp_id─┬─name──┬─work_place─┬─age─┬─depart───┬───salary─┐
│ 5 │ robin │ 北京 │ 35 │ 财务部 │ 50000.00 │
│ 6 │ lilei │ 北京 │ 38 │ 销售事部 │ 50000.00 │
└────────┴───────┴────────────┴─────┴──────────┴──────────┘
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart───┬───salary─┐
│ 4 │ tony │ 杭州 │ 28 │ 销售事部 │ 50000.00 │
└────────┴──────┴────────────┴─────┴──────────┴──────────┘
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart─┬───salary─┐
│ 1 │ tom │ 上海 │ 25 │ 技术部 │ 20000.00 │
│ 2 │ jack │ 上海 │ 26 │ 人事部 │ 10000.00 │
└────────┴──────┴────────────┴─────┴────────┴──────────┘
可以看出,新插入的数据新生成了一个数据块,并没有与原来的分区数据在一起,我们可以执行optimize命令,执行合并操作
-- 执行合并操作
node1 :) OPTIMIZE TABLE emp_mergetree PARTITION '北京';
-- 再次执行查询
select * from emp_mergetree;
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart─┬───salary─┐
│ 1 │ tom │ 上海 │ 25 │ 技术部 │ 20000.00 │
│ 2 │ jack │ 上海 │ 26 │ 人事部 │ 10000.00 │
└────────┴──────┴────────────┴─────┴────────┴──────────┘
┌─emp_id─┬─name──┬─work_place─┬─age─┬─depart───┬───salary─┐
│ 3 │ bob │ 北京 │ 33 │ 财务部 │ 50000.00 │
│ 5 │ robin │ 北京 │ 35 │ 财务部 │ 50000.00 │
│ 6 │ lilei │ 北京 │ 38 │ 销售事部 │ 50000.00 │
└────────┴───────┴────────────┴─────┴──────────┴──────────┘
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart───┬───salary─┐
│ 4 │ tony │ 杭州 │ 28 │ 销售事部 │ 50000.00 │
└────────┴──────┴────────────┴─────┴──────────┴──────────┘
执行上面的合并操作之后,会新生成一个该分区的文件夹,原理的分区文件夹不变。
MergeTree
中主键并不用于去重,而是用于索引
,加快查询速度-- 插入一条相同主键的数据
INSERT INTO emp_mergetree VALUES (1,'sam','杭州',35,'财务部',50000);
-- 会发现该条数据可以插入,由此可知,并不会对主键进行去重
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart─┬───salary─┐
│ 1 │ tom │ 上海 │ 25 │ 技术部 │ 20000.00 │
│ 2 │ jack │ 上海 │ 26 │ 人事部 │ 10000.00 │
└────────┴──────┴────────────┴─────┴────────┴──────────┘
┌─emp_id─┬─name──┬─work_place─┬─age─┬─depart───┬───salary─┐
│ 3 │ bob │ 北京 │ 33 │ 财务部 │ 50000.00 │
│ 5 │ robin │ 北京 │ 35 │ 财务部 │ 50000.00 │
│ 6 │ lilei │ 北京 │ 38 │ 销售事部 │ 50000.00 │
└────────┴───────┴────────────┴─────┴──────────┴──────────┘
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart───┬───salary─┐
│ 4 │ tony │ 杭州 │ 28 │ 销售事部 │ 50000.00 │
└────────┴──────┴────────────┴─────┴──────────┴──────────┘
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart─┬───salary─┐
│ 1 │ sam │ 杭州 │ 35 │ 财务部 │ 50000.00 │
└────────┴──────┴────────────┴─────┴────────┴──────────┘
上文提到MergeTree表引擎无法对相同主键的数据进行去重
,ClickHouse
提供了ReplacingMergeTree
引擎,可以针对相同主键的数据进行去重,它能够在合并分区时删除重复的数据
。值得注意的是,ReplacingMergeTree只是在一定程度上解决数据重复
问题,但是并不能完全保障数据不重复。
CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster]
(
name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1],
name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2],
...
) ENGINE = ReplacingMergeTree([ver])
[PARTITION BY expr]
[ORDER BY expr]
[PRIMARY KEY expr]
[SAMPLE BY expr]
[SETTINGS name=value, ...]
CREATE TABLE emp_replacingmergetree
(
emp_id UInt16 COMMENT '员工id',
name String COMMENT '员工姓名',
work_place String COMMENT '工作地点',
age UInt8 COMMENT '员工年龄',
depart String COMMENT '部门',
salary Decimal32(2) COMMENT '工资'
) ENGINE = ReplacingMergeTree() ORDER BY emp_id PRIMARY KEY emp_id PARTITION BY work_place;
-- 插入数据
INSERT INTO emp_replacingmergetree VALUES (1,'tom','上海',25,'技术部',20000),(2,'jack','上海',26,'人事部',10000);
INSERT INTO emp_replacingmergetree VALUES (3,'bob','北京',33,'财务部',50000),(4,'tony','杭州',28,'销售事部',50000);
select * from emp_replacingmergetree;
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart─┬───salary─┐
│ 1 │ tom │ 上海 │ 25 │ 技术部 │ 20000.00 │
│ 2 │ jack │ 上海 │ 26 │ 人事部 │ 10000.00 │
└────────┴──────┴────────────┴─────┴────────┴──────────┘
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart───┬───salary─┐
│ 4 │ tony │ 杭州 │ 28 │ 销售事部 │ 50000.00 │
└────────┴──────┴────────────┴─────┴──────────┴──────────┘
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart─┬───salary─┐
│ 3 │ bob │ 北京 │ 33 │ 财务部 │ 50000.00 │
└────────┴──────┴────────────┴─────┴────────┴──────────┘
当我们再次向该表插入具有相同主键的数据时,观察查询数据的变化
INSERT INTO emp_replacingmergetree VALUES (1,'tom','上海',25,'技术部',50000);
-- 查询数据,由于没有进行合并,所以存在主键重复的数据
select * from emp_replacingmergetree;
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart─┬───salary─┐
│ 1 │ tom │ 上海 │ 25 │ 技术部 │ 50000.00 │
└────────┴──────┴────────────┴─────┴────────┴──────────┘
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart───┬───salary─┐
│ 4 │ tony │ 杭州 │ 28 │ 销售事部 │ 50000.00 │
└────────┴──────┴────────────┴─────┴──────────┴──────────┘
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart─┬───salary─┐
│ 3 │ bob │ 北京 │ 33 │ 财务部 │ 50000.00 │
└────────┴──────┴────────────┴─────┴────────┴──────────┘
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart─┬───salary─┐
│ 1 │ tom │ 上海 │ 25 │ 技术部 │ 20000.00 │
│ 2 │ jack │ 上海 │ 26 │ 人事部 │ 10000.00 │
└────────┴──────┴────────────┴─────┴────────┴──────────┘
-- 执行合并操作
optimize table emp_replacingmergetree final;
-- 再次查询,相同主键的数据,保留最近插入的数据,旧的数据被清除
select * from emp_replacingmergetree;
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart─┬───salary─┐
│ 1 │ tom │ 上海 │ 25 │ 技术部 │ 50000.00 │
│ 2 │ jack │ 上海 │ 26 │ 人事部 │ 10000.00 │
└────────┴──────┴────────────┴─────┴────────┴──────────┘
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart───┬───salary─┐
│ 4 │ tony │ 杭州 │ 28 │ 销售事部 │ 50000.00 │
└────────┴──────┴────────────┴─────┴──────────┴──────────┘
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart─┬───salary─┐
│ 3 │ bob │ 北京 │ 33 │ 财务部 │ 50000.00 │
└────────┴──────┴────────────┴─────┴────────┴──────────┘
从上面的示例中可以看出,ReplacingMergeTree
是支持对数据去重的,那么是根据什么进行去重呢?答案是:ReplacingMergeTree在去除重复数据时,是以ORDERBY
排序键为基准的,而不是PRIMARY KEY
。我们在看一个示例:
CREATE TABLE emp_replacingmergetree1 (emp_id UInt16 COMMENT '员工id',name String COMMENT '员工姓名',work_place String COMMENT '工作地点',age UInt8 COMMENT '员工年龄',depart String COMMENT '部门',salary Decimal32(2) COMMENT '工资')ENGINE=ReplacingMergeTree() ORDER BY (emp_id,name) PRIMARY KEY emp_id PARTITION BY work_place;
----
ORDER BY (emp_id,name) -- 注意排序key是两个字段
PRIMARY KEY emp_id -- 主键是一个字段
-- 插入数据
INSERT INTO emp_replacingmergetree1 VALUES (1,'tom','上海',25,'技术部',20000),(2,'jack','上海',26,'人事部',10000);
INSERT INTO emp_replacingmergetree1 VALUES (3,'bob','北京',33,'财务部',50000),(4,'tony','杭州',28,'销售事部',50000);
再次向该表中插入相同emp_id和name的数据,并执行合并操作,再观察数据
-- 插入数据
INSERT INTO emp_replacingmergetree1 VALUES (1,'tom','上海',25,'技术部',50000),(1,'sam','上海',25,'技术部',20000);
-- 执行合并操作
optimize table emp_replacingmergetree1 final;
-- 再次查询,可见相同的emp_id和name数据被去重,而形同的主键emp_id不会去重
-- ReplacingMergeTree在去除重复数据时,是以ORDERBY排序键为基准的,而不是PRIMARY KEY
select * from emp_replacingmergetree1;
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart─┬───salary─┐
│ 1 │ sam │ 上海 │ 25 │ 技术部 │ 20000.00 │
│ 1 │ tom │ 上海 │ 25 │ 技术部 │ 50000.00 │
│ 2 │ jack │ 上海 │ 26 │ 人事部 │ 10000.00 │
└────────┴──────┴────────────┴─────┴────────┴──────────┘
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart─┬───salary─┐
│ 3 │ bob │ 北京 │ 33 │ 财务部 │ 50000.00 │
└────────┴──────┴────────────┴─────┴────────┴──────────┘
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart───┬───salary─┐
│ 4 │ tony │ 杭州 │ 28 │ 销售事部 │ 50000.00 │
└────────┴──────┴────────────┴─────┴──────────┴──────────┘
至此,我们知道了ReplacingMergeTree
是支持去重的,并且是按照ORDERBY排序键为基准进行去重的。细心的你会发现,上面的重复数据是在一个分区内的,那么如果重复的数据不在一个分区内,会发生什么现象呢?我们再次向上面的emp_replacingmergetree1表插入不同分区的重复数据
-- 插入数据
INSERT INTO emp_replacingmergetree1 VALUES (1,'tom','北京',26,'技术部',10000);
-- 执行合并操作
optimize table emp_replacingmergetree1 final;
-- 再次查询
-- 发现 1 │ tom │ 北京 │ 26 │ 技术部 │ 10000.00
-- 与 1 │ tom │ 上海 │ 25 │ 技术部 │ 50000.00
-- 数据重复,因为这两行数据不在同一个分区内
-- 这是因为ReplacingMergeTree是以分区为单位删除重复数据的。
-- 只有在相同的数据分区内重复的数据才可以被删除,而不同数据分区之间的重复数据依然不能被剔除
select * from emp_replacingmergetree1;
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart───┬───salary─┐
│ 4 │ tony │ 杭州 │ 28 │ 销售事部 │ 50000.00 │
└────────┴──────┴────────────┴─────┴──────────┴──────────┘
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart─┬───salary─┐
│ 1 │ sam │ 上海 │ 25 │ 技术部 │ 20000.00 │
│ 1 │ tom │ 上海 │ 25 │ 技术部 │ 50000.00 │
│ 2 │ jack │ 上海 │ 26 │ 人事部 │ 10000.00 │
└────────┴──────┴────────────┴─────┴────────┴──────────┘
┌─emp_id─┬─name─┬─work_place─┬─age─┬─depart─┬───salary─┐
│ 1 │ tom │ 北京 │ 26 │ 技术部 │ 10000.00 │
│ 3 │ bob │ 北京 │ 33 │ 财务部 │ 50000.00 │
└────────┴──────┴────────────┴─────┴────────┴──────────┘
ReplacingMergeTree
在去除重复数据时,是以ORDERBY
排序键为基准的,而不是PRIMARY KEY
。
在执行分区合并
时,会触发删除重复数据。optimize
的合并操作是在后台执行的,无法预测具体执行时间点,除非是手动执行。
ReplacingMergeTree
是以分区
为单位删除重复数据的。只有在相同的数据分区内重复的数据才可以被删除,而不同数据分区之间的重复数据依然不能被剔除。
如果没有设置[ver]版本号
,则保留同一组重复数据中的最新插入的数据;如果设置了**[ver]版本号**,则保留同一组重复数据中ver字段取值最大的那一行
。
一般在数据量比较大的情况,尽量不要使用该命令。因为在海量数据场景下,执行optimize
要消耗大量时间