day53 补

1143.最长公共子序列

力扣题目链接(opens new window)

给定两个字符串 text1 和 text2,返回这两个字符串的最长公共子序列的长度。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。两个字符串的「公共子序列」是这两个字符串所共同拥有的子序列。

若这两个字符串没有公共子序列,则返回 0。

示例 1:

  • 输入:text1 = "abcde", text2 = "ace"
  • 输出:3
  • 解释:最长公共子序列是 "ace",它的长度为 3。

示例 2:

  • 输入:text1 = "abc", text2 = "abc"
  • 输出:3
  • 解释:最长公共子序列是 "abc",它的长度为 3。

示例 3:

  • 输入:text1 = "abc", text2 = "def"
  • 输出:0
  • 解释:两个字符串没有公共子序列,返回 0。

提示:

  • 1 <= text1.length <= 1000
  • 1 <= text2.length <= 1000 输入的字符串只含有小写英文字符。

#算法公开课

《代码随想录》算法视频公开课 (opens new window):动态规划子序列问题经典题目 | LeetCode:1143.最长公共子序列 (opens new window),相信结合视频再看本篇题解,更有助于大家对本题的理解

#思路

本题和动态规划:718. 最长重复子数组 (opens new window)区别在于这里不要求是连续的了,但要有相对顺序,即:"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

继续动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

有同学会问:为什么要定义长度为[0, i - 1]的字符串text1,定义为长度为[0, i]的字符串text1不香么?

这样定义是为了后面代码实现方便,如果非要定义为长度为[0, i]的字符串text1也可以,我在 动态规划:718. 最长重复子数组 (opens new window)中的「拓展」里 详细讲解了区别所在,其实就是简化了dp数组第一行和第一列的初始化逻辑。

  1. 确定递推公式

主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1]不相同

如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

代码如下:

if (text1[i - 1] == text2[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}

1
2
3
4
5

  1. dp数组如何初始化

先看看dp[i][0]应该是多少呢?

test1[0, i-1]和空串的最长公共子序列自然是0,所以dp[i][0] = 0;

同理dp[0][j]也是0。

其他下标都是随着递推公式逐步覆盖,初始为多少都可以,那么就统一初始为0。

代码:

vector> dp(text1.size() + 1, vector(text2.size() + 1, 0));

1

  1. 确定遍历顺序

从递推公式,可以看出,有三个方向可以推出dp[i][j],如图:

day53 补_第1张图片

那么为了在递推的过程中,这三个方向都是经过计算的数值,所以要从前向后,从上到下来遍历这个矩阵。

  1. 举例推导dp数组

以输入:text1 = "abcde", text2 = "ace" 为例,dp状态如图:

day53 补_第2张图片

最后红框dp[text1.size()][text2.size()]为最终结果

以上分析完毕,C++代码如下:

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        vector> dp(text1.size() + 1, vector(text2.size() + 1, 0));
        for (int i = 1; i <= text1.size(); i++) {
            for (int j = 1; j <= text2.size(); j++) {
                if (text1[i - 1] == text2[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[text1.size()][text2.size()];
    }
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

  • 时间复杂度: O(n * m),其中 n 和 m 分别为 text1 和 text2 的长度
  • 空间复杂度: O(n * m)

#其他语言版本

#Java:

/*
	二维dp数组
*/
class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        // char[] char1 = text1.toCharArray();
        // char[] char2 = text2.toCharArray();
	// 可以在一開始的時候就先把text1, text2 轉成char[],之後就不需要有這麼多爲了處理字串的調整
	// 就可以和卡哥的code更一致
 	
        int[][] dp = new int[text1.length() + 1][text2.length() + 1]; // 先对dp数组做初始化操作
        for (int i = 1 ; i <= text1.length() ; i++) {
            char char1 = text1.charAt(i - 1);
            for (int j = 1; j <= text2.length(); j++) {
                char char2 = text2.charAt(j - 1);
                if (char1 == char2) { // 开始列出状态转移方程
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                } else {
                    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[text1.length()][text2.length()];
    }
}



/**
	一维dp数组
*/
class Solution {
    public int longestCommonSubsequence(String text1, String text2) {
        int n1 = text1.length();
        int n2 = text2.length();

        // 多从二维dp数组过程分析  
        // 关键在于  如果记录  dp[i - 1][j - 1]
        // 因为 dp[i - 1][j - 1]    dp[j - 1]  <=>  dp[i][j - 1]
        int [] dp = new int[n2 + 1];

        for(int i = 1; i <= n1; i++){

            // 这里pre相当于 dp[i - 1][j - 1]
            int pre = dp[0];
            for(int j = 1; j <= n2; j++){

                //用于给pre赋值
                int cur = dp[j];
                if(text1.charAt(i - 1) == text2.charAt(j - 1)){
                    //这里pre相当于dp[i - 1][j - 1]   千万不能用dp[j - 1] !!
                    dp[j] = pre + 1;
                } else{
                    // dp[j]     相当于   dp[i - 1][j]
                    // dp[j - 1] 相当于   dp[i][j - 1]
                    dp[j] = Math.max(dp[j], dp[j - 1]);
                }

                //更新dp[i - 1][j - 1], 为下次使用做准备
                pre = cur;
            }
        }

        return dp[n2];
    }
}

你可能感兴趣的:(代理模式)