多输入多输出 | MATLAB实现CNN-LSTM-Attention卷积神经网络-长短期记忆网络结合SE注意力机制的多输入多输出预测

多输入多输出 | MATLAB实现CNN-LSTM-Attention卷积神经网络-长短期记忆网络结合SE注意力机制的多输入多输出预测

目录

    • 多输入多输出 | MATLAB实现CNN-LSTM-Attention卷积神经网络-长短期记忆网络结合SE注意力机制的多输入多输出预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 往期精彩
      • 参考资料

预测效果

1
2
3
4

基本介绍

CNN-LSTM-Attention多输入多输出回归预测 基于卷积神经网络-长短期记忆网络结合SE注意力机制的多输入多输出预测 注释清晰 Matlab语言
1.CNN-LSTM-Attention多输出回归预测,多输入多输出 ,LSTM也可以替换成BiLSTM、GRU, matlab需要2020b及以上版本 评价指标包括:R2、MAE、RMSE和MAPE等,效果如图所示,代码质量极高~
2.直接替换数据即可用,适合新手小白~
3.附赠案例数据,如图2所示,实际使用中3个、4个输出均可 直接运行main即可一键出图~

程序设计

  • 完整程序和数据下载方式私信博主回复:CNN-LSTM-Attention卷积神经网络-长短期记忆网络结合SE注意力机制的多输入多输出预测
miniBatchSize = 32;

options = trainingOptions("adam", ...
    MaxEpochs=3, ...
    MiniBatchSize=miniBatchSize, ...
    InitialLearnRate=0.005, ...
    LearnRateDropPeriod=2, ...
    LearnRateSchedule="piecewise", ...
    L2Regularization=5e-4, ...
    SequencePaddingDirection="left", ...
    Shuffle="every-epoch", ...
    ValidationFrequency=floor(numel(featuresTrain)/miniBatchSize), ...
    ValidationData={featuresValidation,labelsValidation}, ...
    Verbose=false, ...
    Plots="training-progress");
net = trainNetwork(featuresTrain,labelsTrain,layers,options);    
function features = extractFeatures(X,afe)

features = log(extract(afe,X) + eps);
features = permute(features, [2 3 1]);
features = {features};

end

往期精彩

MATLAB实现RBF径向基神经网络多输入多输出预测
MATLAB实现BP神经网络多输入多输出预测
MATLAB实现DNN神经网络多输入多输出预测

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/116377961
[2] https://blog.csdn.net/kjm13182345320/article/details/127931217
[3] https://blog.csdn.net/kjm13182345320/article/details/127894261

你可能感兴趣的:(多输入多输出,CNN-LSTM-Att,Attention,多输入多输出预测)