注意力机制讲解与代码解析

一、SEBlock(通道注意力机制)

先在H*W维度进行压缩,全局平均池化将每个通道平均为一个值。
(B, C, H, W)---- (B, C, 1, 1)

利用各channel维度的相关性计算权重
(B, C, 1, 1) --- (B, C//K, 1, 1) --- (B, C, 1, 1) --- sigmoid

与原特征相乘得到加权后的。注意力机制讲解与代码解析_第1张图片

import torch
import torch.nn as nn

class SELayer(nn.Module):
    def __init__(self, channel, reduction = 4):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1) //自适应全局池化,只需要给出池化后特征图大小
        self.fc1 = nn.Sequential(
            nn.Conv2d(channel, channel//reduction, 1, bias = False),
            nn.ReLu(implace = True),
            nn.Conv2d(channel//reduction, channel, 1, bias = False),
            nn.sigmoid()
        )
        
    def forward(self, x):
        y = self.avg_pool(x)
        y_out = self.fc1(y)
        return x * y

二、CBAM(通道注意力+空间注意力机制)注意力机制讲解与代码解析_第2张图片

CBAM里面既有通道注意力机制,也有空间注意力机制。
通道注意力同SE的大致相同,但额外加入了全局最大池化与全局平均池化并行。注意力机制讲解与代码解析_第3张图片

空间注意力机制:先在channel维度进行最大池化和均值池化,然后在channel维度合并,MLP进行特征交融。最终和原始特征相乘。 注意力机制讲解与代码解析_第4张图片

import torch
import torch.nn as nn

class ChannelAttention(nn.Module):
    def __init__(self, channel, rate = 4):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)
        self.fc1 = nn.Sequential(
            nn.Conv2d(channel, channel//rate, 1, bias = False)
            nn.ReLu(implace = True)
            nn.Conv2d(channel//rate, channel, 1, bias = False)            
        )
        self.sig = nn.sigmoid()
    def forward(self, x):
        avg = sefl.avg_pool(x)
        avg_feature = self.fc1(avg)
        
        max = self.max_pool(x)
        max_feature = self.fc1(max)
        
        out = max_feature + avg_feature
        out = self.sig(out)
        return x * out
        

import torch
import torch.nn as nn

class SpatialAttention(nn.Module):
    def __init__(self):
        super(SpatialAttention, self).__init__()
        //(B,C,H,W)---(B,1,H,W)---(B,2,H,W)---(B,1,H,W)
        self.conv1 = nn.Conv2d(2, 1, kernel_size = 3, padding = 1, bias = False)
        self.sigmoid = nn.sigmoid()

    def forward(self, x):
        mean_f = torch.mean(x, dim = 1, keepdim = True)
        max_f = torch.max(x, dim = 1, keepdim = True)
        cat = torch.cat([mean_f, max_f], dim = 1)
        out = self.conv1(cat)
        return x*self.sigmod(out)

三、transformer里的注意力机制 

Scaled Dot-Product Attention

该注意力机制的输入是QKV。

1.先Q,K相乘。

2.scale

3.softmax

4.求output

注意力机制讲解与代码解析_第5张图片

 

import torch
import torch.nn as nn

class ScaledDotProductAttention(nn.Module):
    def __init__(self, scale):
        super(ScaledDotProductAttention, self)
        self.scale = scale
        self.softmax = nn.softmax(dim = 2)
    
    def forward(self, q, k, v):
        u = torch.bmm(q, k.transpose(1, 2))
        u = u / scale
        attn = self.softmax(u)
        output = torch.bmm(attn, v)
        return output

scale = np.power(d_k, 0.5)  //缩放系数为K维度的根号。
//Q  (B, n_q, d_q) , K (B, n_k, d_k)  V (B, n_v, d_v),Q与K的特征维度一定要一样。KV的个数一定要一样。

 MultiHeadAttention

将QKVchannel维度转换为n*C的形式,相当于分成n份,分别做注意力机制。

1.QKV单头变多头  channel ----- n * new_channel通过linear变换,然后把head和batch先合并

2.求单头注意力机制输出

3.维度拆分   将最终的head和channel合并。

4.linear得到最终输出维度

注意力机制讲解与代码解析_第6张图片

import torch
import torch.nn as nn

class MultiHeadAttention(nn.Module):
    def __init__(self, n_head, d_k, d_k_, d_v, d_v_, d_o):
        super(MultiHeadAttention, self)
        self.n_head = n_head
        self.d_k = d_k
        self.d_v = d_v

        self.fc_k = nn.Linear(d_k_, n_head * d_k)
        self.fc_v = nn.Linear(d_v_, n_head * d_v)
        self.fc_q = nn.Linear(d_k_, n_head * d_k)
        self.attention = ScaledDotProductAttention(scale=np.power(d_k, 0.5))
        self.fc_o = nn.Linear(n_head * d_v, d_0)
    
    def forward(self, q, k, v):
        batch, n_q, d_q_ = q.size()
        batch, n_k, d_k_ = k.size()
        batch, n_v, d_v_ = v.size()
        
        q = self.fc_q(q)
        k = self.fc_k(k)
        v = self.fc_v(v)
        
        q = q.view(batch, n_q, n_head, d_q).permute(2, 0, 1, 3).contiguous().view(-1, n_q, d_q)
        k = k.view(batch, n_k, n_head, d_k).permute(2, 0, 1, 3).contiguous().view(-1, n_k, d_k)
        v = v.view(batch, n_v, n_head, d_v).permute(2, 0, 1, 3).contiguous().view(-1. n_v, d_v)    
        output = self.attention(q, k, v)
        output = output.view(n_head, batch, n_q, d_v).permute(1, 2, 0, 3).contiguous().view(batch, n_q, -1)
        output = self.fc_0(output)
        return output

 

你可能感兴趣的:(深度学习,人工智能)