目录
一、引入
二、简介
三、fail-fast的出现场景
3.1 单线程环境下的fail-fast:
3.2 多线程环境下:
四、fail-fast的原理
五、避免fail-fast
5.1 方法一
5.2 方法二
在ArrayList、HashMap的扩容代码中都有对变量modCount的操作,该变量的操作在add,remove等操作中都会发生改变。那么该变量到底有什么作用呢?
fail-fast 机制,即快速失败机制,是java集合(Collection)中的一种错误检测机制。
当多个线程对同一个集合的内容进行操作时,就有可能出现在一个线程正在迭代集合的过程中,该集合因为别的线程对其的操作使得结构发生变化,这就会产生fail-fast事件,抛出 ConcurrentModificationException异常。
例如:当某一个线程A通过iterator去遍历某集合的过程中,若该集合的内容被其他线程所改变了;那么线程A访问集合时,就会抛出ConcurrentModificationException异常,产生fail-fast事件。
但是要注意,fail-fast机制并不保证在不同步的修改下一定会抛出异常,它只是尽最大努力去抛出,所以这种机制一般仅用于检测bug。
在我们常见的java集合中就可能出现fail-fast机制,比如ArrayList,HashMap。在多线程和单线程环境下都有可能出现快速失败。
ArrayList发生fail-fast例子:
public static void main(String[] args) {
List list = new ArrayList<>();
for (int i = 0 ; i < 10 ; i++ ) {
list.add(i + "");
}
Iterator iterator = list.iterator();
int i = 0 ;
while(iterator.hasNext()) {
if (i == 3) {
list.remove(3);
}
System.out.println(iterator.next());
i ++;
}
}
该段代码定义了一个Arraylist集合,并使用迭代器遍历,在遍历过程中,刻意在某一步迭代中remove一个元素,这个时候,就会发生fail-fast。
HashMap发生fail-fast:
public static void main(String[] args) {
Map map = new HashMap<>();
for (int i = 0 ; i < 10 ; i ++ ) {
map.put(i+"", i+"");
}
Iterator> it = map.entrySet().iterator();
int i = 0;
while (it.hasNext()) {
if (i == 3) {
map.remove(3+"");
}
Entry entry = it.next();
System.out.println("key= " + entry.getKey() + " and value= " + entry.getValue());
i++;
}
}
该段代码定义了一个hashmap对象并存放了10个键值对,在迭代遍历过程中,使用map的remove方法移除了一个元素,导致抛出了 ConcurrentModificationException异常:
public class FailFastTest {
public static List list = new ArrayList<>();
private static class MyThread1 extends Thread {
@Override
public void run() {
Iterator iterator = list.iterator();
while(iterator.hasNext()) {
String s = iterator.next();
System.out.println(this.getName() + ":" + s);
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
super.run();
}
}
private static class MyThread2 extends Thread {
int i = 0;
@Override
public void run() {
while (i < 10) {
System.out.println("thread2:" + i);
if (i == 2) {
list.remove(i);
}
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
i ++;
}
}
}
public static void main(String[] args) {
for(int i = 0 ; i < 10;i++){
list.add(i+"");
}
MyThread1 thread1 = new MyThread1();
MyThread2 thread2 = new MyThread2();
thread1.setName("thread1");
thread2.setName("thread2");
thread1.start();
thread2.start();
}
}
启动两个线程,其中一个线程1对list进行迭代,另一个线程2在线程1的迭代过程中去remove一个元素,结果也是抛出了java.util.ConcurrentModificationException
上面都是讲的删除导致集合结构改变而造成快速失败的情况,如果是添加导致的集合结构改变,也是会出现快速失败的,这里就不再举例了。
fail-fast是如何抛出ConcurrentModificationException异常的,又是在什么情况下才会抛出?
我们知道,对于集合如list,map类,我们都可以通过迭代器来遍历,而Iterator其实只是一个接口,具体的实现还是要看具体的集合类中的内部类去实现Iterator并实现相关方法。ConcurrentModificationException都是在操作Iterator时抛出的异常。这里我们就以ArrayList类为例。在ArrayList中,当调用list.iterator()时,其源码是:
public Iterator iterator() {
return new Itr();
}
即它会返回一个新的Itr类,而Itr类是ArrayList的内部类,实现了Iterator接口,而ArrayList的Iterator是在父类AbstractList.java中实现的。源码如下:
package java.util;
public abstract class AbstractList extends AbstractCollection implements List {
...
// AbstractList中唯一的属性
// 用来记录List修改的次数:每修改一次(添加/删除等操作),将modCount+1
protected transient int modCount = 0;
// 返回List对应迭代器。实际上,是返回Itr对象。
public Iterator iterator() {
return new Itr();
}
// Itr是Iterator(迭代器)的实现类
private class Itr implements Iterator {
// index of next element to return
int cursor = 0;
// index of last element returned; -1 if no such
int lastRet = -1;
// 修改数的记录值。
// 每次新建Itr()对象时,都会保存新建该对象时对应的modCount;
// 以后每次遍历List中的元素的时候,都会比较expectedModCount和modCount是否相等;
// 若不相等,则抛出ConcurrentModificationException异常,产生fail-fast事件。
int expectedModCount = modCount;
public boolean hasNext() {
return cursor != size();
}
@SuppressWarnings("unchecked")
public E next() {
// 获取下一个元素之前,都会判断“新建Itr对象时保存的modCount”和“当前的modCount”是否相等;
// 若不相等,则抛出ConcurrentModificationException异常,产生fail-fast事件。
checkForComodification();
int i = cursor;
if (i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[lastRet = i];
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
@Override
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer super E> consumer) {
Objects.requireNonNull(consumer);
final int size = ArrayList.this.size;
int i = cursor;
if (i >= size) {
return;
}
final Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length) {
throw new ConcurrentModificationException();
}
while (i != size && modCount == expectedModCount) {
consumer.accept((E) elementData[i++]);
}
// update once at end of iteration to reduce heap write traffic
cursor = i;
lastRet = i - 1;
checkForComodification();
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
...
}
其中,Itr类有三个属性:
int cursor; // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount;
我们一步一步来看Itr类中的方法:
public boolean hasNext() {
return cursor != size;
}
迭代器迭代结束的标志就是hasNext()返回false,而该方法就是用cursor游标和size(集合中的元素数目)进行对比,当cursor等于size时,表示已经遍历完成。
接下来看看最关心的next()和remove()方法,看看为什么在迭代过程中,如果有线程对集合结构做出改变,就会发生fail-fast:
@SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[lastRet = i];
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
从源码知道,每次调用next()和remove()方法,在实际访问元素/删除元素前,都会调用checkForComodification方法,该方法源码如下:
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
可以看出,该方法才是判断是否抛出ConcurrentModificationException异常的关键。
在该段代码中,当modCount != expectedModCount时,就会抛出该异常。但是在一开始的时候,expectedModCount初始值默认等于modCount,为什么会出现modCount != expectedModCount?
很明显expectedModCount在整个迭代过程除了一开始赋予初始值modCount外,并没有在任何地方对其进行修改操作,不可能发生改变,所以可能发生改变的就只有modCount。下面我们在通过源码来看一下什么时候“modCount 不等于 expectedModCount”,通过ArrayList的源码,来看看modCount是如何被修改的。
package java.util;
public class ArrayList extends AbstractList
implements List, RandomAccess, Cloneable, java.io.Serializable
{
...
// list中容量变化时,对应的同步函数
public void ensureCapacity(int minCapacity) {
modCount++;
int oldCapacity = elementData.length;
if (minCapacity > oldCapacity) {
Object oldData[] = elementData;
int newCapacity = (oldCapacity * 3)/2 + 1;
if (newCapacity < minCapacity)
newCapacity = minCapacity;
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
}
}
// 添加元素到队列最后
public boolean add(E e) {
// 修改modCount
ensureCapacity(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}
// 添加元素到指定的位置
public void add(int index, E element) {
if (index > size || index < 0)
throw new IndexOutOfBoundsException(
"Index: "+index+", Size: "+size);
// 修改modCount
ensureCapacity(size+1); // Increments modCount!!
System.arraycopy(elementData, index, elementData, index + 1,
size - index);
elementData[index] = element;
size++;
}
// 添加集合
public boolean addAll(Collection extends E> c) {
Object[] a = c.toArray();
int numNew = a.length;
// 修改modCount
ensureCapacity(size + numNew); // Increments modCount
System.arraycopy(a, 0, elementData, size, numNew);
size += numNew;
return numNew != 0;
}
// 删除指定位置的元素
public E remove(int index) {
RangeCheck(index);
// 修改modCount
modCount++;
E oldValue = (E) elementData[index];
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index, numMoved);
elementData[--size] = null; // Let gc do its work
return oldValue;
}
// 快速删除指定位置的元素
private void fastRemove(int index) {
// 修改modCount
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // Let gc do its work
}
// 清空集合
public void clear() {
// 修改modCount
modCount++;
// Let gc do its work
for (int i = 0; i < size; i++)
elementData[i] = null;
size = 0;
}
...
}
从中,我们发现:无论是add()、remove(),还是clear(),只要涉及到修改集合中的元素个数时,都会改变modCount的值。
接下来,我们再系统的梳理一下fail-fast是怎么产生的。步骤如下:
至此,我们就完全了解了fail-fast是如何产生的!
即,当多个线程对同一个集合进行操作的时候,某线程访问集合的过程中,该集合的内容被其他线程所改变(即其它线程通过add、remove、clear等方法,改变了modCount的值);这时,就会抛出ConcurrentModificationException异常,产生fail-fast事件。类似的,hashMap中发生的原理也是一样的。
了解了fail-fast机制的产生原理,接下来就看看如何解决fail-fast
在单线程的遍历过程中,如果要进行remove操作,可以调用迭代器的remove方法而不是集合类的remove方法。看看ArrayList中迭代器的remove方法的源码:
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
checkForComodification();
try {
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
可以看到,该remove方法并不会修改modCount的值,并且不会对后面的遍历造成影响。但是该方法remove不能指定元素,只能remove当前遍历过的那个元素,这也是该方法的局限性。
例子:
public static void main(String[] args) {
List list = new ArrayList<>();
for (int i = 0 ; i < 10 ; i++ ) {
list.add(i + "");
}
Iterator iterator = list.iterator();
int i = 0 ;
while(iterator.hasNext()) {
if (i == 3) {
iterator.remove(); //迭代器的remove()方法
}
System.out.println(iterator.next());
i ++;
}
}
fail-fast机制,是一种错误检测机制。它只能被用来检测错误,因为JDK并不保证fail-fast机制一定会发生。若在多线程环境下使用fail-fast机制的集合(如ArrayList、HashMap),建议使用“java.util.concurrent包下的类”去取代“java.util包下的类”。
以ArrayList为中只需要将ArrayList替换成java.util.concurrent包下对应的类即可解决fail-fast机制。
即,将代码
private static List list = new ArrayList();
替换为
private static List list = new CopyOnWriteArrayList();
则可以解决该办法。
CopyOnWriterArrayList在是使用上跟 ArrayList几乎一样, CopyOnWriter是写时复制的容器(COW),在读写时是线程安全的。该容器在对add和remove等操作时,并不是在原数组上进行修改,而是将原数组拷贝一份,在新数组上进行修改,待完成后,才将指向旧数组的引用指向新数组,所以对于 CopyOnWriterArrayList在迭代过程并不会发生fail-fast现象。但 CopyOnWrite容器只能保证数据的最终一致性,不能保证数据的实时一致性。
下面我们以ArrayList对应的CopyOnWriteArrayList为例,再进一步谈谈java.util.concurrent包中是如何解决fail-fast事件的。下面是CopyOnWriteArrayList的源码:
package java.util.concurrent;
import java.util.*;
import java.util.concurrent.locks.*;
import sun.misc.Unsafe;
public class CopyOnWriteArrayList
implements List, RandomAccess, Cloneable, java.io.Serializable {
...
// 返回集合对应的迭代器
public Iterator iterator() {
return new COWIterator(getArray(), 0);
}
...
private static class COWIterator implements ListIterator {
private final Object[] snapshot;
private int cursor;
private COWIterator(Object[] elements, int initialCursor) {
cursor = initialCursor;
// 新建COWIterator时,将集合中的元素保存到一个新的拷贝数组中。
// 这样,当原始集合的数据改变,拷贝数据中的值也不会变化。
snapshot = elements;
}
public boolean hasNext() {
return cursor < snapshot.length;
}
public boolean hasPrevious() {
return cursor > 0;
}
public E next() {
if (! hasNext())
throw new NoSuchElementException();
return (E) snapshot[cursor++];
}
public E previous() {
if (! hasPrevious())
throw new NoSuchElementException();
return (E) snapshot[--cursor];
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor-1;
}
public void remove() {
throw new UnsupportedOperationException();
}
public void set(E e) {
throw new UnsupportedOperationException();
}
public void add(E e) {
throw new UnsupportedOperationException();
}
}
...
}
从中,我们可以看出:
对于HashMap,可以使用ConcurrentHashMap, ConcurrentHashMap采用了锁机制,是线程安全的。在迭代方面,ConcurrentHashMap使用了一种不同的迭代方式。在这种迭代方式中,当iterator被创建后集合再发生改变就不再是抛出ConcurrentModificationException,取而代之的是在改变时new新的数据从而不影响原有的数据 ,iterator完成后再将头指针替换为新的数据 ,这样iterator线程可以使用原来旧的数据,而写线程也可以并发的完成改变。即迭代不会发生fail-fast,但不保证获取的是最新的数据。
原文地址:https://www.cnblogs.com/skywang12345/p/3308762.html
https://blog.csdn.net/zymx14/article/details/78394464