Python矩阵的基本用法
mat()函数将目标数据的类型转化成矩阵(matrix)
1,mat()函数和array()函数的区别
Numpy函数库中存在两种不同的数据类型(矩阵matrix和数组array),都可以用于处理行列表示的数字元素,虽然他们看起来很相似,但是在这两个数据类型上执行相同的数学运算可能得到不同的结果,其中Numpy函数库中的matrix与MATLAB中matrices等价。
直接看一个例子:
import numpy as np
a = np.mat('1 3;5 7')
b = np.mat([[1,2],[3,4]])
print(a)
print(b)
print(type(a))
print(type(b))
c = np.array([[1,3],[4,5]])
print(c)
print(type(c))
结果:
[[1 3]
[5 7]]
[[1 2]
[3 4]]
[[1 3]
[4 5]]
首先,mat() 函数与array()函数生成矩阵所需的数据格式有区别,mat()函数中数据可以为字符串以分号(;)分割或者为列表形式以逗号(,)分割,而array()函数中数据只能为后者形式。
其次,两者的类型不同,用mat函数转换为矩阵后才能进行一些线性代数的操作。
from numpy import *
# 构建一个4*4的随机数组
array_1 = random.rand(4,4)
print(array_1)
print(type(array_1))
'''
[[0.12681561 0.26644355 0.03582107 0.71475804]
[0.01380711 0.85308305 0.37838406 0.83663897]
[0.20034209 0.5736587 0.56692541 0.64008518]
[0.97780979 0.129229 0.37688616 0.55341492]]
'''
# 使用mat函数将数组转化为矩阵
matrix_1 = mat(array_1)
print(matrix_1)
print(type(matrix_1))
'''
[[0.32538457 0.60674013 0.68625186 0.58957989]
[0.26465813 0.93378939 0.12944934 0.95064032]
[0.65683256 0.01352025 0.11932895 0.9361348 ]
[0.11667241 0.16077876 0.50904118 0.44128675]]
'''
2,mat()函数创建常见的矩阵
import numpy as np
# 创建一个3*3的零矩阵,矩阵这里zeros函数的参数是一个tuple类型(3,3)
data1 = np.mat(np.zeros((3,3)))
print(data1)
'''
[[0. 0. 0.]
[0. 0. 0.]
[0. 0. 0.]]
'''
# 创建一个2*4的1矩阵,默认是浮点型的数据,如果需要时int,可以使用dtype=int
data2 = np.mat(np.ones((2,4)))
print(data2)
'''
[[1. 1. 1. 1.]
[1. 1. 1. 1.]]
'''
# 这里使用numpy的random模块
# random.rand(2,2)创建的是一个二维数组,但是需要将其转化为matrix
data3 = np.mat(np.random.rand(2,2))
print(data3)
'''
[[0.62002668 0.55292404]
[0.53018371 0.1548954 ]]
'''
# 生成一个3*3的0-10之间的随机整数矩阵,如果需要指定下界可以多加一个参数
data4 = np.mat(np.random.randint(10,size=(3,3)))
print(data4)
'''
[[0 4 1]
[7 9 9]
[9 0 4]]
'''
# 产生一个2-8之间的随机整数矩阵
data5 = np.mat(np.random.randint(2,8,size=(2,5)))
print(data5)
'''
[[4 6 3 3 4]
[4 3 3 3 6]]
'''
# 产生一个2*2的对角矩阵
data6 = np.mat(np.eye(2,2,dtype=int))
print(data6)
'''
[[1 0]
[0 1]]
'''
# 生成一个对角线为1,2,3的对角矩阵
a1 = [1,2,3]
a2 = np.mat(np.diag(a1))
print(a2)
'''
[[1 0 0]
[0 2 0]
[0 0 3]]
'''
2.1,zeros
zeros函数是生成指定维数的全0数组
>>myMat=np.zeros(3) ###生成一个一维的全0数组
>>print(myMat)
>>array([0.,0.,0.])
>>myMat1=np.zeros((3,2)) ####生成一个3*2的全0数组
>>print(myMat)
>>array([[0.,0.],
[0.,0.]
[0.,0.]])
2.2,ones
ones函数是用于生成一个全1的数组
>>onesMat=np.ones(3) ###1*3的全1数组
>>print(onesMat)
>>array([1.,1.,1.])
>>onesMat1=np.ones((2,3)) ###2*3的全1数组
>>print(onesMat1)
>>array([[1.,1.,1.],[1.,1.,1.]])
2.3,eye
eye函数用户生成指定行数的单位矩阵
>>eyeMat=np.eye(4)
>>print(eyeMat)
>>array([[1.,0.,0.,0.],
[0.,1.,0.,0.],
[0.,0.,1.,0.,],
[0.,0.,0.,1.]])
2.4,full
numpy.full(shape,fill_value=num)用于创建一个自定义形状的数组,可以自己指定一个值,用它填满整个数组。
fill_value 用来填充的值,可以是数字,也可以是字符串
nd_test = np.full(shape=(2,3,4),fill_value='ai')
print(nd_test)
array([[['ai