软件设计师--算法题型汇总分析

算法题常考的几种算法

1.回溯

n皇后问题

什么是N-皇后问题?

说到这个N-皇后问题,就不得不先提一下这个历史上著名的8皇后问题啦。

八皇后问题,是一个古老而著名的问题.该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法?

那么,我们将8皇后问题推广一下,就可以得到我们的N皇后问题了。N皇后问题是一个经典的问题,在一个NxN的棋盘上放置N个皇后,使其不能互相攻击 (同一行、同一列、同一斜线上的皇后都会自动攻击) 那么问,有多少种摆法?

回溯算法(backtracking algorithm)

N皇后问题其实就是回溯算法中的一个典型应用。为此,在这里先介绍一下回溯算法。

定义(参考至百度百科)

回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。许多复杂的,规模较大的问题都可以使用回溯法,有“通用解题方法”的美称。

基本思想

回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。

  • 若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。
  • 而若使用回溯法求任一个解时,只要搜索到问题的一个解就可以结束。

什么是深度优先搜索?

  • 深度优先搜索(DFS即Depth First Search)其过程简要来说是对每一个可能的分支路径深入到不能再深入为止,而且每个节点只能访问一次。

解决问题的一般步骤

  • 针对所给问题,定义问题的解空间,它至少包含问题的一个(最优)解。
  • 确定易于搜索的解空间结构,使得能用回溯法方便地搜索整个解空间 。
  • 以深度优先的方式搜索解空间,并且在搜索过程中用剪枝函数避免无效搜索。

确定了解空间的组织结构后,回溯法就从开始结点(根结点)出发,以深度优先的方式搜索整个解空间。这个开始结点就成为一个活结点,同时也成为当前的扩展结点。在当前的扩展结点处,搜索向纵深方向移至一个新结点。这个新结点就成为一个新的活结点,并成为当前扩展结点。如果在当前的扩展结点处不能再向纵深方向移动,则当前扩展结点就成为死结点。此时,应往回移动(回溯)至最近的一个活结点处,并使这个活结点成为当前的扩展结点。回溯法即以这种工作方式递归地在解空间中搜索,直至找到所要求的解或解空间中已没有活结点时为止。

解空间和解空间树

  • 解空间
    一个复杂问题的解决往往由多部分构成,那么,一个大的解决方案就可以看成是由若干个小的决策组成。很多时候它们构成一个决策序列。解决一个问题的所有可能的决策序列构成该问题的解空间。解空间中满足约束条件的决策序列称为可行解。一般说来,解任何问题都有一个目标,在约束条件下使目标值达到最大(或最小)的可行解称为该问题的最优解。在解空间中,前k项决策已经取定的所有决策序列之集,称为k定子解空间。0定子解空间即是该问题的解空间。这个空间必须至少包含一个解(可能是最优的)。
  • 解空间树
    因为回溯方法的基本思想是通过搜索解空间来找到问题所要求的解,所以如何组织解空间的结构会直接影响对问题的求解效率。一般地,我们可以用一棵树来描述解空间,并称之为解空间树。

算法框架

  • 针对N叉树的递归回溯方法
//针对N叉树的递归回溯方法  
void backtrack (int t)
{
    if (t>n)
    {
        output(x); //叶子节点,输出结果,x是可行解
    }
    else
    {
        for i = 1 to k//当前节点的所有子节点
        {
            x[t]=value(i); //每个子节点的值赋值给x
            //满足约束条件和限界条件
            if (constraint(t)&&bound(t))
            backtrack(t+1); //递归下一层
        }
    }
}
  • 针对N叉树的迭代回溯方法
//针对N叉树的迭代回溯方法
void iterativeBacktrack ()  
{  
    int t=1;  
    while (t>0)
    {  
        if(ExistSubNode(t)) //当前节点的存在子节点  
        {  
            for i = 1 to k  //遍历当前节点的所有子节点  
            {  
                x[t]=value(i);//每个子节点的值赋值给x  
                if (constraint(t)&&bound(t))//满足约束条件和限界条件   
                {  
                    //solution表示在节点t处得到了一个解  
                    if (solution(t))
                        output(x);//得到问题的一个可行解,输出  
                    else
                        t++;//没有得到解,继续向下搜索  
    

你可能感兴趣的:(●计算机基础)