引入:
还是摆出最经典的SLAM运动和观测方程
f ( x ) = { x k = f ( x k − 1 , u k ) + w k z k , j = h ( y j , x k ) + v k , j f(x)= \begin{cases} x_k = f(x_{k-1}, u_k) + w_k \\ z_{k,j} = h(y_j, x_k) + v_{k,j} \end{cases} f(x)={xk=f(xk−1,uk)+wkzk,j=h(yj,xk)+vk,j
实际上要解决: 拥有某些运动数据 u u u 和观测数据 z z z 时,如何确定状态量 x x x 和 y y y 的分布。
在 k k k 时刻,用 0 − k 0-k 0−k 的数据估计现在的状态分布:
P ( x k ∣ x 0 , u 1 : k , z 1 : k ) ⇓ B a y e s 法则交换 z 和 x P ( z k ∣ x k ) P ( x k ∣ x 0 , u 1 : k , z 1 : k − 1 ) ⇓ 按 x k − 1 时刻为条件概率展开 ∫ P ( x k ∣ x k − 1 , x 0 , u 1 : k , z 1 : k − 1 ) P ( x k − 1 ∣ x 0 , u 1 : k , z 1 : k − 1 ) d x k − 1 P(x_k|x_0, u_{1:k}, z_{1:k}) \\\;\\\Downarrow Bayes法则交换z和x \\\;\\ P(z_k|x_k)P(x_k|x_0, u_{1:k},z_{1:k-1}) \\\;\\\Downarrow 按x_{k-1}时刻为条件概率展开 \\\;\\ \int P(x_k|x_{k-1}, x_0, u_{1:k}, z_{1:k-1})P(x_{k-1}|x_0, u_{1:k}, z_{1:k-1})\, \text d x_{k-1} P(xk∣x0,u1:k,z1:k)⇓Bayes法则交换z和xP(zk∣xk)P(xk∣x0,u1:k,z1:k−1)⇓按xk−1时刻为条件概率展开∫P(xk∣xk−1,x0,u1:k,z1:k−1)P(xk−1∣x0,u1:k,z1:k−1)dxk−1
上式 ∫ P ( x k ∣ x k − 1 , x 0 , u 1 : k , z 1 : k − 1 ) P ( x k − 1 ∣ x 0 , u 1 : k , z 1 : k − 1 ) d x k − 1 \int P(x_k|x_{k-1}, x_0, u_{1:k}, z_{1:k-1})P(x_{k-1}|x_0, u_{1:k}, z_{1:k-1})\, \text d x_{k-1} ∫P(xk∣xk−1,x0,u1:k,z1:k−1)P(xk−1∣x0,u1:k,z1:k−1)dxk−1
主流的有两种做法:
在马尔科夫性成立后,当前状态仅和上个时态有关,上边左右式可分别简化为(右式中, u k u_k uk 和 k − 1 k-1 k−1 时刻的状态无关,拿掉!):
左边: P ( x k ∣ x k − 1 , x 0 , u 1 : k , z 1 : k − 1 ) = P ( x k ∣ x k − 1 , u k ) 右边: P ( x k − 1 ∣ x 0 , u 1 : k , z 1 : k − 1 ) = P ( x k − 1 ∣ x 0 , u 1 : k , z 1 : k − 1 ) 左边:\qquad P(x_k|x_{k-1}, x_0, u_{1:k}, z_{1:k-1}) = P(x_k|x_{k-1}, u_k)\\\; \qquad右边:\qquad P(x_{k-1}|x_0, u_{1:k}, z_{1:k-1}) = P(x_{k-1}|x_0, u_{1:k}, z_{1:k-1}) 左边:P(xk∣xk−1,x0,u1:k,z1:k−1)=P(xk∣xk−1,uk)右边:P(xk−1∣x0,u1:k,z1:k−1)=P(xk−1∣x0,u1:k,z1:k−1)
根据高斯分布性质可得EKF中的预测环节:
P ( x k ∣ x 0 , u 1 : k , z 1 : k − 1 ) = N ( A k x ˉ k − 1 + u k , A k P ^ k − 1 A k T + R ) = 记为 N ( x ˉ k , P ˉ k ) P(x_k|x_0,u_{1:k}, z_{1:k-1}) = N(A_k\bar x_{k-1}+u_k, \;\;\;A_k\hat P_{k-1}A_k^T+R) = 记为\quad N(\bar x_k, \bar P_k) P(xk∣x0,u1:k,z1:k−1)=N(Akxˉk−1+uk,AkP^k−1AkT+R)=记为N(xˉk,Pˉk)
如此,就可以带入我们的EKF中进行使用。
运算快,资源低;
局限:
BA(Bundle Adjustment):源于三维重建,在这里的意义是 通过不断调整相机的姿态和特征点的位置,使从每一个特征点反射出来的几束光线都收束到相机中心,类似求解只有观测方程的SLAM问题。
针对此问题,观测方程:
z = h ( ξ , p ) z = h(\xi, p) z=h(ξ,p)
ξ \xi ξ 是位姿(李代数表示) , p p p 是路标(特征点的位置), 观测误差如下:
e = z − h ( ξ , p ) e = z - h(\xi, p) e=z−h(ξ,p)
代价函数(Cost Function)如下:
1 2 ∑ i = 1 m ∑ j = 1 n ∣ ∣ e i j ∣ ∣ 2 = 1 2 ∑ i = 1 m ∑ j = 1 n ∣ ∣ z i j − h ( ξ i , p j ) ∣ ∣ 2 \frac{1}{2}\sum_{i=1}^m\sum_{j=1}^n||e_{ij}||^2 = \frac{1}{2}\sum_{i=1}^m\sum_{j=1}^n||z_{ij}-h(\xi_{i},p_j)||^2 21i=1∑mj=1∑n∣∣eij∣∣2=21i=1∑mj=1∑n∣∣zij−h(ξi,pj)∣∣2
为了便于理解这里的 h h h ,举在相机中的例子:
这就是一个观测方程 h h h 的一种具体参数化的过程。
再看要求解的非线性最小二乘问题( h h h 非线性显然 ):
1 2 ∑ i = 1 m ∑ j = 1 n ∣ ∣ z i j − h ( ξ i , p j ) ∣ ∣ 2 \frac{1}{2}\sum_{i=1}^m\sum_{j=1}^n||z_{ij}-h(\xi_{i},p_j)||^2 21i=1∑mj=1∑n∣∣zij−h(ξi,pj)∣∣2
首先定义要优化的变量:
x = [ ξ 1 , . . . , ξ m , p 1 , . . . , p n ] T x = [\xi_1, ..., \xi_m,p_1, ..., p_n]^T x=[ξ1,...,ξm,p1,...,pn]T
注意:虽然一个误差项针对的是单个位姿和路标点,但是在整体BA中,必须将优化变量定义为所有待优化的变量。
根据前文:求解非线性问题,要给一个小增量和增量方向,最终要求的也是这个 Δ x \Delta x Δx,这里给增量以后的代价函数为:
1 2 ∣ ∣ f ( x + Δ x ) ∣ ∣ 2 ≈ 1 2 ∑ i = 1 m ∑ j = 1 n ∣ ∣ e i j + F i j Δ ξ i + E i j Δ p j ∣ ∣ 2 \frac{1}{2}||f(x+\Delta x)||^2 \approx \frac{1}{2}\sum_{i=1}^m\sum_{j=1}^n||e_{ij}+F_{ij}\Delta \xi_i + E_{ij}\Delta p_j||^2 21∣∣f(x+Δx)∣∣2≈21i=1∑mj=1∑n∣∣eij+FijΔξi+EijΔpj∣∣2
其中 F i j F_{ij} Fij 表示代价函数对相机姿态的偏导数, E i j E_{ij} Eij 表示对路标点位置的偏导数。
将相机位姿,和空间点变量分别放在一起:上式如下:
x c = [ ξ 1 , ξ 2 , . . . , ξ m ] T ∈ R 6 m , x p = [ p 1 , p 2 , . . . , p m ] T ∈ R 3 n ⇓ 1 2 ∣ ∣ f ( x + Δ x ) ∣ ∣ 2 = 1 2 ∣ ∣ e + F Δ x c + E Δ x p ∣ ∣ 2 x_c = [\xi_1, \xi_2, ..., \xi_m]^T \in \R^{6m}, \qquad x_p = [p_1, p_2, ..., p_m]^T \in \R^{3n} \\\;\Downarrow\\\;\\ \frac{1}{2}||f(x+\Delta x)||^2 = \frac{1}{2} ||e + F\Delta x_c + E \Delta x_p||^2 xc=[ξ1,ξ2,...,ξm]T∈R6m,xp=[p1,p2,...,pm]T∈R3n⇓21∣∣f(x+Δx)∣∣2=21∣∣e+FΔxc+EΔxp∣∣2
根据前边的非线性优化,最终我们要面临
H Δ x = g H \Delta x = g HΔx=g
而求解它要用的雅克比矩阵可以根据位姿和路标分别定义为:
J = [ F E ] J = [F \quad E] J=[FE]
则:
H = J T J = [ F T F F T E E T F E T E ] H = J^TJ= \begin{bmatrix} F^TF & F^TE \\ E^TF & E^TE \end{bmatrix} H=JTJ=[FTFETFFTEETE]
点越多,就代表这个H的维度越大,计算复杂,资源占得多,接下来分析如何观察这个 H H H 的特点。
根据前边,我们知道 H = J T J H = J^TJ H=JTJ, H H H的研究放在 J J J 上,对于J,考虑一个 e i j e_{ij} eij 它的表述如下:
几何意义就是:它只涉及第 i 个矩阵和第 j 个路标,其余都为0,描述的是 ξ i \xi_i ξi看到 p j p_j pj 这件事,且前边的是位姿导数(6维),后边的是路标(三维)。
假设有2个相机,6个路标。可视化它们的关系如下(可以观测到,则底下用实线连接):
根据上边,把 C 1 C_1 C1 观察到 P 1 P_1 P1 的雅克比直观出来,则如下,因为 C 1 C_1 C1 六维:
这个时候,将所有 J i j J_{ij} Jij 和 它们相乘之后的 H H H 同样直观展示:
我们发现:H对应邻接矩阵,可以知道 假如 C i C_i Ci 可以观察到 P j P_j Pj ,那么 H i j H_{ij} Hij 则是有值的,否则是为0.如下:
根据以上H性质,可以将H分块为:其中 B B B 纯位姿, C C C对角线纯路标,B非对角非零表示共视关系:
H = [ B E E T C ] H = \begin{bmatrix} B & E \\ E^T & C \end{bmatrix} H=[BETEC]
这个时候就可以求解 H Δ x = g H \Delta x = g HΔx=g 这个方程:
[ B E E T C ] [ Δ x c Δ x p ] = [ v w ] \begin{bmatrix} B & E \\ E^T & C \end{bmatrix} \begin{bmatrix}\Delta x_c \\ \Delta x_p\end{bmatrix} = \begin{bmatrix} v \\w \end{bmatrix} [BETEC][ΔxcΔxp]=[vw]
此时通过Schur消元(也叫边缘化)—就是先求一个比如 Δ x c \Delta x_c Δxc 然后再反代回去求 Δ x p \Delta x_p Δxp 的方法去求解。
列举一个常见的鲁棒核函数,Huber核:
f ( x ) = { 1 2 e 2 i f ∣ e ∣ ≤ δ , δ ( ∣ e ∣ − 1 2 δ ) o t h e r w i s e . f(x)= \begin{cases} \frac{1}{2}e^2 \qquad\qquad\qquad if|e| \le \delta, \\ \delta(|e| - \frac{1}{2} \delta)\qquad\quad otherwise . \end{cases} f(x)={21e2if∣e∣≤δ,δ(∣e∣−21δ)otherwise.
它的图像如下:
在使用G2O求解时,所有点云都要进行Schur,因为定义的Matrix维度仅仅是相机姿态参数的维度,要确保它不包含其他路标维度,不然报错。