欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。
- 推荐:kuan 的首页,持续学习,不断总结,共同进步,活到老学到老
- 导航
- 檀越剑指大厂系列:全面总结 java 核心技术点,如集合,jvm,并发编程 redis,kafka,Spring,微服务,Netty 等
- 常用开发工具系列:罗列常用的开发工具,如 IDEA,Mac,Alfred,electerm,Git,typora,apifox 等
- 数据库系列:详细总结了常用数据库 mysql 技术点,以及工作中遇到的 mysql 问题等
- 懒人运维系列:总结好用的命令,解放双手不香吗?能用一个命令完成绝不用两个操作
- 数据结构与算法系列:总结数据结构和算法,不同类型针对性训练,提升编程思维,剑指大厂
非常期待和您一起在这个小小的网络世界里共同探索、学习和成长。 ✨✨ 欢迎订阅本专栏 ✨✨
二叉树是一种常见的树状数据结构,它由节点组成,每个节点最多有两个子节点,分别称为左子节点和右子节点。每个节点包含一个值或数据项,这些节点通过边(通常称为链接或指针)相互连接起来,形成一个层次结构。
二叉树的特点包括:
根节点:二叉树的顶部节点称为根节点,它是树的起始点,没有父节点。
子节点:每个节点可以有零个、一个或两个子节点,分别是左子节点和右子节点。
叶节点:没有子节点的节点称为叶节点,它们位于树的末端。
高度:树的高度是从根节点到最深叶节点的最长路径的长度。
深度:节点的深度是从根节点到该节点的路径长度。
二叉树有多种不同的种类,它们在树的结构和性质上具有不同的特点。以下是一些常见的二叉树种类:
二叉搜索树(Binary Search Tree,BST):BST 是一种二叉树,其中每个节点的左子树包含的值都小于该节点的值,右子树包含的值都大于该节点的值。BST 的特性使得它非常适合用于搜索和排序操作。
平衡二叉树(Balanced Binary Tree):平衡二叉树是一种二叉搜索树,它确保树的高度平衡,从而保持搜索、插入和删除操作的平均时间复杂度为 O(log n)。
完全二叉树(Complete Binary Tree):完全二叉树是一种二叉树,除了最后一层,所有层都是完全填充的,而且最后一层的节点从左到右填充,不留空缺。这种树在堆数据结构中常常用于实现。
满二叉树(Full Binary Tree):满二叉树是一种二叉树,每个节点要么没有子节点,要么有两个子节点。所有叶子节点都在同一层上。
完美二叉树(Perfect Binary Tree):完美二叉树是一种满二叉树,它的所有叶子节点都在同一层,并且每个非叶子节点都有两个子节点。
二叉堆(Binary Heap):二叉堆是一种特殊的完全二叉树,分为最小堆和最大堆。在最小堆中,每个节点的值都小于或等于其子节点的值;在最大堆中,每个节点的值都大于或等于其子节点的值。堆通常用于实现优先队列等数据结构。
线索二叉树(Threaded Binary Tree):线索二叉树是一种特殊的二叉树,其中节点的指针指向其前驱和后继节点,这样可以实现更高效的中序遍历。
AVL 树:AVL 树是一种自平衡的二叉搜索树,确保树的高度平衡,从而保持插入和删除操作的时间复杂度为 O(log n)。
这些是二叉树的一些常见种类,每种类型都具有不同的特性,适用于不同的应用场景和问题。根据具体需求,选择合适的二叉树类型可以提高算法和数据结构的效率。
存储规则分为两点:
定义树节点与左、右孩子引用(TreeNode)
使用数组,前面讲堆时用过,若以 0 作为树的根,索引可以通过如下方式计算
父 = floor((子 - 1) / 2)
左孩子 = 父 * 2 + 1
右孩子 = 父 * 2 + 2
遍历也分为两种
该
节点,然后是左
子树,最后是右
子树左
子树,然后是该
节点,最后是右
子树左
子树,然后是右
子树,最后是该
节点本轮开始时队列 | 本轮访问节点 |
---|---|
[1] | 1 |
[2, 3] | 2 |
[3, 4] | 3 |
[4, 5, 6] | 4 |
[5, 6] | 5 |
[6, 7, 8] | 6 |
[7, 8] | 7 |
[8] | 8 |
[] |
注意
以上用队列来层序遍历是针对 TreeNode 这种方式表示的二叉树
对于数组表现的二叉树,则直接遍历数组即可,自然为层序遍历的顺序
栈暂存 | 已处理 | 前序遍历 | 中序遍历 |
---|---|---|---|
[1] | 1 ✔️ 左 右 | 1 | |
[1, 2] | 2✔️ 左 右 1✔️ 左 右 |
2 | |
[1, 2, 4] | 4✔️ 左 ✔️ 右 ✔️ 2✔️ 左 右 1✔️ 左 右 |
4 | 4 |
[1, 2] | 2✔️ 左 ✔️ 右 ✔️ 1✔️ 左 右 |
2 | |
[1] | 1✔️ 左 ✔️ 右 | 1 | |
[1, 3] | 3✔️ 左 右 1✔️ 左 ✔️ 右 |
3 | |
[1, 3, 5] | 5✔️ 左 ✔️ 右 ✔️ 3✔️ 左 右 1✔️ 左 ✔️ 右 |
5 | 5 |
[1, 3] | 3✔️ 左 ✔️ 右 1✔️ 左 ✔️ 右 |
3 | |
[1, 3, 6] | 6✔️ 左 ✔️ 右 ✔️ 3✔️ 左 ✔️ 右 1✔️ 左 ✔️ 右 |
6 | 6 |
[1, 3] | 3✔️ 左 ✔️ 右 ✔️ 1✔️ 左 ✔️ 右 |
||
[1] | 1✔️ 左 ✔️ 右 ✔️ | ||
[] |
/**
* 前序遍历
* @param node 节点
*/
static void preOrder(TreeNode node) {
if (node == null) {
return;
}
System.out.print(node.val + "\t"); // 值
preOrder(node.left); // 左
preOrder(node.right); // 右
}
/**
* 中序遍历
* @param node 节点
*/
static void inOrder(TreeNode node) {
if (node == null) {
return;
}
inOrder(node.left); // 左
System.out.print(node.val + "\t"); // 值
inOrder(node.right); // 右
}
/**
* 后序遍历
* @param node 节点
*/
static void postOrder(TreeNode node) {
if (node == null) {
return;
}
postOrder(node.left); // 左
postOrder(node.right); // 右
System.out.print(node.val + "\t"); // 值
}
前序遍历
LinkedListStack<TreeNode> stack = new LinkedListStack<>();
TreeNode curr = root;
while (!stack.isEmpty() || curr != null) {
if (curr != null) {
stack.push(curr);
System.out.println(curr);
curr = curr.left;
} else {
TreeNode pop = stack.pop();
curr = pop.right;
}
}
中序遍历
LinkedListStack<TreeNode> stack = new LinkedListStack<>();
TreeNode curr = root;
while (!stack.isEmpty() || curr != null) {
if (curr != null) {
stack.push(curr);
curr = curr.left;
} else {
TreeNode pop = stack.pop();
System.out.println(pop);
curr = pop.right;
}
}
后序遍历
LinkedListStack<TreeNode> stack = new LinkedListStack<>();
TreeNode curr = root;
TreeNode pop = null;
while (!stack.isEmpty() || curr != null) {
if (curr != null) {
stack.push(curr);
curr = curr.left;
} else {
TreeNode peek = stack.peek();
if (peek.right == null || peek.right == pop) {
pop = stack.pop();
System.out.println(pop);
} else {
curr = peek.right;
}
}
}
对于后序遍历,向回走时,需要处理完右子树才能 pop 出栈。如何知道右子树处理完成呢?
如果栈顶元素的 r i g h t ≡ n u l l right \equiv null right≡null 表示没啥可处理的,可以出栈
如果栈顶元素的 r i g h t ≠ n u l l right \neq null right=null,
对于前、中两种遍历,实际以上代码从右子树向回走时,并未走完全程(stack 提前出栈了)后序遍历以上代码是走完全程了
下面是一种统一的写法,依据后序遍历修改
LinkedList<TreeNode> stack = new LinkedList<>();
TreeNode curr = root; // 代表当前节点
TreeNode pop = null; // 最近一次弹栈的元素
while (curr != null || !stack.isEmpty()) {
if (curr != null) {
colorPrintln("前: " + curr.val, 31);
stack.push(curr); // 压入栈,为了记住回来的路
curr = curr.left;
} else {
TreeNode peek = stack.peek();
// 右子树可以不处理, 对中序来说, 要在右子树处理之前打印
if (peek.right == null) {
colorPrintln("中: " + peek.val, 36);
pop = stack.pop();
colorPrintln("后: " + pop.val, 34);
}
// 右子树处理完成, 对中序来说, 无需打印
else if (peek.right == pop) {
pop = stack.pop();
colorPrintln("后: " + pop.val, 34);
}
// 右子树待处理, 对中序来说, 要在右子树处理之前打印
else {
colorPrintln("中: " + peek.val, 36);
curr = peek.right;
}
}
}
public static void colorPrintln(String origin, int color) {
System.out.printf("\033[%dm%s\033[0m%n", color, origin);
}
public boolean isSymmetric(TreeNode root) {
return check(root.left, root.right);
}
public boolean check(TreeNode left, TreeNode right) {
// 若同时为 null
if (left == null && right == null) {
return true;
}
// 若有一个为 null (有上一轮筛选,另一个肯定不为 null)
if (left == null || right == null) {
return false;
}
if (left.val != right.val) {
return false;
}
return check(left.left, right.right) && check(left.right, right.left);
}
类似题目:Leetcode 100 题 - 相同的树
后序遍历求解
/*
思路:
1. 得到左子树深度, 得到右子树深度, 二者最大者加一, 就是本节点深度
2. 因为需要先得到左右子树深度, 很显然是后序遍历典型应用
3. 关于深度的定义:从根出发, 离根最远的节点总边数,
注意: 力扣里的深度定义要多一
深度2 深度3 深度1
1 1 1
/ \ / \
2 3 2 3
\
4
*/
public int maxDepth(TreeNode node) {
if (node == null) {
return 0; // 非力扣题目改为返回 -1
}
int d1 = maxDepth(node.left);
int d2 = maxDepth(node.right);
return Integer.max(d1, d2) + 1;
}
后序遍历求解-非递归
/*
思路:
1. 使用非递归后序遍历, 栈的最大高度即为最大深度
*/
public int maxDepth(TreeNode root) {
TreeNode curr = root;
LinkedList<TreeNode> stack = new LinkedList<>();
int max = 0;
TreeNode pop = null;
while (curr != null || !stack.isEmpty()) {
if (curr != null) {
stack.push(curr);
int size = stack.size();
if (size > max) {
max = size;
}
curr = curr.left;
} else {
TreeNode peek = stack.peek();
if(peek.right == null || peek.right == pop) {
pop = stack.pop();
} else {
curr = peek.right;
}
}
}
return max;
}
层序遍历求解
/*
思路:
1. 使用层序遍历, 层数即最大深度
*/
public int maxDepth(TreeNode root) {
if(root == null) {
return 0;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
int level = 0;
while (!queue.isEmpty()) {
level++;
int size = queue.size();
for (int i = 0; i < size; i++) {
TreeNode node = queue.poll();
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
}
return level;
}
后序遍历求解
public int minDepth(TreeNode node) {
if (node == null) {
return 0;
}
int d1 = minDepth(node.left);
int d2 = minDepth(node.right);
if (d1 == 0 || d2 == 0) {
return d1 + d2 + 1;
}
return Integer.min(d1, d2) + 1;
}
相较于求最大深度,应当考虑:
上面两种情况满足时,不应该再把为 null 子树的深度 0 参与最小值比较,例如这样
1
/
2
1
\
3
\
4
层序遍历求解
遇到的第一个叶子节点所在层就是最小深度
例如,下面的树遇到的第一个叶子节点 3 所在的层就是最小深度,其他 4,7 等叶子节点深度更深,也更晚遇到
1
/ \
2 3
/ \
4 5
/
7
代码
public int minDepth(TreeNode root) {
if(root == null) {
return 0;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
int level = 0;
while (!queue.isEmpty()) {
level++;
int size = queue.size();
for (int i = 0; i < size; i++) {
TreeNode node = queue.poll();
if (node.left == null && node.right == null) {
return level;
}
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
}
return level;
}
效率会高于之前后序遍历解法,因为找到第一个叶子节点后,就无需后续的层序遍历了
public TreeNode invertTree(TreeNode root) {
fn(root);
return root;
}
private void fn(TreeNode node){
if (node == null) {
return;
}
TreeNode t = node.left;
node.left = node.right;
node.right = t;
fn(node.left);
fn(node.right);
}
先交换、再递归或是先递归、再交换都可以
static class TreeNode {
public String val;
public TreeNode left;
public TreeNode right;
public TreeNode(String val) {
this.val = val;
}
public TreeNode(TreeNode left, String val, TreeNode right) {
this.left = left;
this.val = val;
this.right = right;
}
@Override
public String toString() {
return this.val;
}
}
/*
中缀表达式 (2-1)*3
后缀(逆波兰)表达式 21-3*
1.遇到数字入栈
2.遇到运算符, 出栈两次, 与当前节点建立父子关系, 当前节点入栈
栈
| |
| |
| |
_____
表达式树
*
/ \
- 3
/ \
2 1
21-3*
*/
public TreeNode constructExpressionTree(String[] tokens) {
LinkedList<TreeNode> stack = new LinkedList<>();
for (String t : tokens) {
switch (t) {
case "+", "-", "*", "/" -> { // 运算符
TreeNode right = stack.pop();
TreeNode left = stack.pop();
TreeNode parent = new TreeNode(t);
parent.left = left;
parent.right = right;
stack.push(parent);
}
default -> { // 数字
stack.push(new TreeNode(t));
}
}
}
return stack.peek();
}
public class E09Leetcode105 {
/*
preOrder = {1,2,4,3,6,7}
inOrder = {4,2,1,6,3,7}
根 1
pre in
左 2,4 4,2
右 3,6,7 6,3,7
根 2
左 4
根 3
左 6
右 7
*/
public TreeNode buildTree(int[] preOrder, int[] inOrder) {
if (preOrder.length == 0) {
return null;
}
// 创建根节点
int rootValue = preOrder[0];
TreeNode root = new TreeNode(rootValue);
// 区分左右子树
for (int i = 0; i < inOrder.length; i++) {
if (inOrder[i] == rootValue) {
// 0 ~ i-1 左子树
// i+1 ~ inOrder.length -1 右子树
int[] inLeft = Arrays.copyOfRange(inOrder, 0, i); // [4,2]
int[] inRight = Arrays.copyOfRange(inOrder, i + 1, inOrder.length); // [6,3,7]
int[] preLeft = Arrays.copyOfRange(preOrder, 1, i + 1); // [2,4]
int[] preRight = Arrays.copyOfRange(preOrder, i + 1, inOrder.length); // [3,6,7]
root.left = buildTree(preLeft, inLeft); // 2
root.right = buildTree(preRight, inRight); // 3
break;
}
}
return root;
}
}
public TreeNode buildTree(int[] inOrder, int[] postOrder) {
if (inOrder.length == 0) {
return null;
}
// 根
int rootValue = postOrder[postOrder.length - 1];
TreeNode root = new TreeNode(rootValue);
// 切分左右子树
for (int i = 0; i < inOrder.length; i++) {
if (inOrder[i] == rootValue) {
int[] inLeft = Arrays.copyOfRange(inOrder, 0, i);
int[] inRight = Arrays.copyOfRange(inOrder, i + 1, inOrder.length);
int[] postLeft = Arrays.copyOfRange(postOrder, 0, i);
int[] postRight = Arrays.copyOfRange(postOrder, i, postOrder.length - 1);
root.left = buildTree(inLeft, postLeft);
root.right = buildTree(inRight, postRight);
break;
}
}
return root;
}
觉得有用的话点个赞
呗。
❤️❤️❤️本人水平有限,如有纰漏,欢迎各位大佬评论批评指正!如果觉得这篇文对你有帮助的话,也请给个点赞、收藏下吧,非常感谢!
Stay Hungry Stay Foolish 道阻且长,行则将至,让我们一起加油吧!