力扣题目链接
(opens new window)
翻转一棵二叉树。
这道题目背后有一个让程序员心酸的故事,听说 Homebrew的作者Max Howell,就是因为没在白板上写出翻转二叉树,最后被Google拒绝了。(真假不做判断,权当一个乐子哈)
这道题目是非常经典的题目,也是比较简单的题目(至少一看就会)。
但正是因为这道题太简单,一看就会,一些同学都没有抓住起本质,稀里糊涂的就把这道题目过了。
如果做过这道题的同学也建议认真看完,相信一定有所收获!
我们之前介绍的都是各种方式遍历二叉树,这次要翻转了,感觉还是有点懵逼。
这得怎么翻转呢?
如果要从整个树来看,翻转还真的挺复杂,整个树以中间分割线进行翻转,如图:
可以发现想要翻转它,其实就把每一个节点的左右孩子交换一下就可以了。
关键在于遍历顺序,前中后序应该选哪一种遍历顺序? (一些同学这道题都过了,但是不知道自己用的是什么顺序)
遍历的过程中去翻转每一个节点的左右孩子就可以达到整体翻转的效果。
注意只要把每一个节点的左右孩子翻转一下,就可以达到整体翻转的效果
这道题目使用前序遍历和后序遍历都可以,唯独中序遍历不方便,因为中序遍历会把某些节点的左右孩子翻转了两次!建议拿纸画一画,就理解了
那么层序遍历可以不可以呢?依然可以的!只要把每一个节点的左右孩子翻转一下的遍历方式都是可以的!
对于二叉树的递归法的前中后序遍历,已经在二叉树:前中后序递归遍历
(opens new window)详细讲解了。
我们下文以前序遍历为例,通过动画来看一下翻转的过程:
我们来看一下递归三部曲:
参数就是要传入节点的指针,不需要其他参数了,通常此时定下来主要参数,如果在写递归的逻辑中发现还需要其他参数的时候,随时补充。
返回值的话其实也不需要,但是题目中给出的要返回root节点的指针,可以直接使用题目定义好的函数,所以就函数的返回类型为TreeNode*
。
TreeNode* invertTree(TreeNode* root)
当前节点为空的时候,就返回
if (root == NULL) return root;
因为是先前序遍历,所以先进行交换左右孩子节点,然后反转左子树,反转右子树。
swap(root->left, root->right);
invertTree(root->left);
invertTree(root->right);
基于这递归三步法,代码基本写完,C++代码如下:
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
if (root == NULL) return root;
swap(root->left, root->right); // 中
invertTree(root->left); // 左
invertTree(root->right); // 右
return root;
}
};
二叉树:听说递归能做的,栈也能做!
(opens new window)中给出了前中后序迭代方式的写法,所以本题可以很轻松的写出如下迭代法的代码:
C++代码迭代法(前序遍历)
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
if (root == NULL) return root;
stack st;
st.push(root);
while(!st.empty()) {
TreeNode* node = st.top(); // 中
st.pop();
swap(node->left, node->right);
if(node->right) st.push(node->right); // 右
if(node->left) st.push(node->left); // 左
}
return root;
}
};
如果这个代码看不懂的话可以再回顾一下二叉树:听说递归能做的,栈也能做!
(opens new window)。
我们在二叉树:前中后序迭代方式的统一写法
(opens new window)中介绍了统一的写法,所以,本题也只需将文中的代码少做修改便可。
C++代码如下迭代法(前序遍历)
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
stack st;
if (root != NULL) st.push(root);
while (!st.empty()) {
TreeNode* node = st.top();
if (node != NULL) {
st.pop();
if (node->right) st.push(node->right); // 右
if (node->left) st.push(node->left); // 左
st.push(node); // 中
st.push(NULL);
} else {
st.pop();
node = st.top();
st.pop();
swap(node->left, node->right); // 节点处理逻辑
}
}
return root;
}
};
如果上面这个代码看不懂,回顾一下文章二叉树:前中后序迭代方式的统一写法
(opens new window)。
也就是层序遍历,层数遍历也是可以翻转这棵树的,因为层序遍历也可以把每个节点的左右孩子都翻转一遍,代码如下:
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
queue que;
if (root != NULL) que.push(root);
while (!que.empty()) {
int size = que.size();
for (int i = 0; i < size; i++) {
TreeNode* node = que.front();
que.pop();
swap(node->left, node->right); // 节点处理
if (node->left) que.push(node->left);
if (node->right) que.push(node->right);
}
}
return root;
}
};
如果对以上代码不理解,或者不清楚二叉树的层序遍历,可以看这篇二叉树:层序遍历登场!
(opens new window)
文中我指的是递归的中序遍历是不行的,因为使用递归的中序遍历,某些节点的左右孩子会翻转两次。
如果非要使用递归中序的方式写,也可以,如下代码就可以避免节点左右孩子翻转两次的情况:
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
if (root == NULL) return root;
invertTree(root->left); // 左
swap(root->left, root->right); // 中
invertTree(root->left); // 注意 这里依然要遍历左孩子,因为中间节点已经翻转了
return root;
}
};
代码虽然可以,但这毕竟不是真正的递归中序遍历了。
但使用迭代方式统一写法的中序是可以的。
代码如下:
class Solution {
public:
TreeNode* invertTree(TreeNode* root) {
stack st;
if (root != NULL) st.push(root);
while (!st.empty()) {
TreeNode* node = st.top();
if (node != NULL) {
st.pop();
if (node->right) st.push(node->right); // 右
st.push(node); // 中
st.push(NULL);
if (node->left) st.push(node->left); // 左
} else {
st.pop();
node = st.top();
st.pop();
swap(node->left, node->right); // 节点处理逻辑
}
}
return root;
}
};
为什么这个中序就是可以的呢,因为这是用栈来遍历,而不是靠指针来遍历,避免了递归法中翻转了两次的情况,大家可以画图理解一下,这里有点意思的。
针对二叉树的问题,解题之前一定要想清楚究竟是前中后序遍历,还是层序遍历。
二叉树解题的大忌就是自己稀里糊涂的过了(因为这道题相对简单),但是也不知道自己是怎么遍历的。
这也是造成了二叉树的题目“一看就会,一写就废”的原因。
针对翻转二叉树,我给出了一种递归,三种迭代(两种模拟深度优先遍历,一种层序遍历)的写法,都是之前我们讲过的写法,融汇贯通一下而已。
大家一定也有自己的解法,但一定要成方法论,这样才能通用,才能举一反三!
力扣题目链接
(opens new window)
给定一个二叉树,检查它是否是镜像对称的。
首先想清楚,判断对称二叉树要比较的是哪两个节点,要比较的可不是左右节点!
对于二叉树是否对称,要比较的是根节点的左子树与右子树是不是相互翻转的,理解这一点就知道了其实我们要比较的是两个树(这两个树是根节点的左右子树),所以在递归遍历的过程中,也是要同时遍历两棵树。
那么如何比较呢?
比较的是两个子树的里侧和外侧的元素是否相等。如图所示:
那么遍历的顺序应该是什么样的呢?
本题遍历只能是“后序遍历”,因为我们要通过递归函数的返回值来判断两个子树的内侧节点和外侧节点是否相等。
正是因为要遍历两棵树而且要比较内侧和外侧节点,所以准确的来说是一个树的遍历顺序是左右中,一个树的遍历顺序是右左中。
但都可以理解算是后序遍历,尽管已经不是严格上在一个树上进行遍历的后序遍历了。
其实后序也可以理解为是一种回溯,当然这是题外话,讲回溯的时候会重点讲的。
说到这大家可能感觉我有点啰嗦,哪有这么多道理,上来就干就完事了。别急,我说的这些在下面的代码讲解中都有身影。
那么我们先来看看递归法的代码应该怎么写。
递归三部曲
因为我们要比较的是根节点的两个子树是否是相互翻转的,进而判断这个树是不是对称树,所以要比较的是两个树,参数自然也是左子树节点和右子树节点。
返回值自然是bool类型。
代码如下:
bool compare(TreeNode* left, TreeNode* right)
要比较两个节点数值相不相同,首先要把两个节点为空的情况弄清楚!否则后面比较数值的时候就会操作空指针了。
节点为空的情况有:(注意我们比较的其实不是左孩子和右孩子,所以如下我称之为左节点右节点)
此时已经排除掉了节点为空的情况,那么剩下的就是左右节点不为空:
此时左右节点不为空,且数值也不相同的情况我们也处理了。
代码如下:
if (left == NULL && right != NULL) return false;
else if (left != NULL && right == NULL) return false;
else if (left == NULL && right == NULL) return true;
else if (left->val != right->val) return false; // 注意这里我没有使用else
注意上面最后一种情况,我没有使用else,而是else if, 因为我们把以上情况都排除之后,剩下的就是 左右节点都不为空,且数值相同的情况。
此时才进入单层递归的逻辑,单层递归的逻辑就是处理 左右节点都不为空,且数值相同的情况。
代码如下:
bool outside = compare(left->left, right->right); // 左子树:左、 右子树:右
bool inside = compare(left->right, right->left); // 左子树:右、 右子树:左
bool isSame = outside && inside; // 左子树:中、 右子树:中(逻辑处理)
return isSame;
如上代码中,我们可以看出使用的遍历方式,左子树左右中,右子树右左中,所以我把这个遍历顺序也称之为“后序遍历”(尽管不是严格的后序遍历)。
最后递归的C++整体代码如下:
class Solution {
public:
bool compare(TreeNode* left, TreeNode* right) {
// 首先排除空节点的情况
if (left == NULL && right != NULL) return false;
else if (left != NULL && right == NULL) return false;
else if (left == NULL && right == NULL) return true;
// 排除了空节点,再排除数值不相同的情况
else if (left->val != right->val) return false;
// 此时就是:左右节点都不为空,且数值相同的情况
// 此时才做递归,做下一层的判断
bool outside = compare(left->left, right->right); // 左子树:左、 右子树:右
bool inside = compare(left->right, right->left); // 左子树:右、 右子树:左
bool isSame = outside && inside; // 左子树:中、 右子树:中 (逻辑处理)
return isSame;
}
bool isSymmetric(TreeNode* root) {
if (root == NULL) return true;
return compare(root->left, root->right);
}
};
我给出的代码并不简洁,但是把每一步判断的逻辑都清楚的描绘出来了。
如果上来就看网上各种简洁的代码,看起来真的很简单,但是很多逻辑都掩盖掉了,而题解可能也没有把掩盖掉的逻辑说清楚。
盲目的照着抄,结果就是:发现这是一道“简单题”,稀里糊涂的就过了,但是真正的每一步判断逻辑未必想到清楚。
当然我可以把如上代码整理如下:
class Solution {
public:
bool compare(TreeNode* left, TreeNode* right) {
if (left == NULL && right != NULL) return false;
else if (left != NULL && right == NULL) return false;
else if (left == NULL && right == NULL) return true;
else if (left->val != right->val) return false;
else return compare(left->left, right->right) && compare(left->right, right->left);
}
bool isSymmetric(TreeNode* root) {
if (root == NULL) return true;
return compare(root->left, root->right);
}
};
这个代码就很简洁了,但隐藏了很多逻辑,条理不清晰,而且递归三部曲,在这里完全体现不出来。
所以建议大家做题的时候,一定要想清楚逻辑,每一步做什么。把题目所有情况想到位,相应的代码写出来之后,再去追求简洁代码的效果。
这道题目我们也可以使用迭代法,但要注意,这里的迭代法可不是前中后序的迭代写法,因为本题的本质是判断两个树是否是相互翻转的,其实已经不是所谓二叉树遍历的前中后序的关系了。
这里我们可以使用队列来比较两个树(根节点的左右子树)是否相互翻转,(注意这不是层序遍历)
通过队列来判断根节点的左子树和右子树的内侧和外侧是否相等,如动画所示:
如下的条件判断和递归的逻辑是一样的。
代码如下:
class Solution {
public:
bool isSymmetric(TreeNode* root) {
if (root == NULL) return true;
queue que;
que.push(root->left); // 将左子树头结点加入队列
que.push(root->right); // 将右子树头结点加入队列
while (!que.empty()) { // 接下来就要判断这两个树是否相互翻转
TreeNode* leftNode = que.front(); que.pop();
TreeNode* rightNode = que.front(); que.pop();
if (!leftNode && !rightNode) { // 左节点为空、右节点为空,此时说明是对称的
continue;
}
// 左右一个节点不为空,或者都不为空但数值不相同,返回false
if ((!leftNode || !rightNode || (leftNode->val != rightNode->val))) {
return false;
}
que.push(leftNode->left); // 加入左节点左孩子
que.push(rightNode->right); // 加入右节点右孩子
que.push(leftNode->right); // 加入左节点右孩子
que.push(rightNode->left); // 加入右节点左孩子
}
return true;
}
};
细心的话,其实可以发现,这个迭代法,其实是把左右两个子树要比较的元素顺序放进一个容器,然后成对成对的取出来进行比较,那么其实使用栈也是可以的。
只要把队列原封不动的改成栈就可以了,我下面也给出了代码。
class Solution {
public:
bool isSymmetric(TreeNode* root) {
if (root == NULL) return true;
stack st; // 这里改成了栈
st.push(root->left);
st.push(root->right);
while (!st.empty()) {
TreeNode* leftNode = st.top(); st.pop();
TreeNode* rightNode = st.top(); st.pop();
if (!leftNode && !rightNode) {
continue;
}
if ((!leftNode || !rightNode || (leftNode->val != rightNode->val))) {
return false;
}
st.push(leftNode->left);
st.push(rightNode->right);
st.push(leftNode->right);
st.push(rightNode->left);
}
return true;
}
};
这次我们又深度剖析了一道二叉树的“简单题”,大家会发现,真正的把题目搞清楚其实并不简单,leetcode上accept了和真正掌握了还是有距离的。
我们介绍了递归法和迭代法,递归依然通过递归三部曲来解决了这道题目,如果只看精简的代码根本看不出来递归三部曲是如何解题的。
在迭代法中我们使用了队列,需要注意的是这不是层序遍历,而且仅仅通过一个容器来成对的存放我们要比较的元素,知道这一本质之后就发现,用队列,用栈,甚至用数组,都是可以的。
如果已经做过这道题目的同学,读完文章可以再去看看这道题目,思考一下,会有不一样的发现!
这两道题目基本和本题是一样的,只要稍加修改就可以AC。