归并排序和快速排序的两种实现

在此之前我们已经介绍过归并排序和快速排序:浅谈归并排序与快速排序,但其中的实现都是基于递归的。本文将重新温故这两种算法并给出基于迭代的实现。

目录

  • 1. 归并排序
    • 1.1 基于递归
    • 1.2 基于迭代
  • 2. 快速排序
    • 2.1 基于递归
    • 2.2 基于迭代

1. 归并排序

1.1 基于递归

归并排序的核心是二路归并,实现二路归并需要一个额外的辅助数组,因此空间复杂度是 O ( n ) O(n) O(n)

void merge(vector<int>& a, int l, int mid, int r, vector<int>& tmp) {
    int i = l, j = mid + 1, k = l;

    while (i <= mid && j <= r) {
        if (a[i] <= a[j]) tmp[k++] = a[i++];
        else tmp[k++] = a[j++];
    }

    while (i <= mid) tmp[k++] = a[i++];
    while (j <= r) tmp[k++] = a[j++];

    for (int i = l; i <= r; i++) a[i] = tmp[i];
}

该函数会对数组 a[l, mid][mid + 1, r] 两部分进行二路归并,其中辅助数组 tmp 的大小与 a 相同。

有了 merge 函数,我们就可以很方便的实现归并排序了:

void merge_sort(vector<int>& a, int l, int r, vector<int>& tmp) {
    if (l >= r) return;

    int mid = l + r >> 1;
    merge_sort(a, l, mid, tmp), merge_sort(a, mid + 1, r, tmp);

    merge(a, l, mid, r, tmp);
}

1.2 基于迭代

很明显,基于递归的实现是自顶向下的,而基于迭代的实现是自底向上的。

我们可以先枚举区间长度,再枚举区间左端点。一开始每个区间的长度是 1 1 1,我们每次对相邻的两个区间进行二路归并,每归并一次区间的长度就是原先的两倍,所以枚举区间长度时变量 len 的更新方式为 len *= 2

对于区间左端点,每合并完两个区间后,左端点就要更新成下下个区间,如下图所示:

归并排序和快速排序的两种实现_第1张图片

还需保证 mid < n - 1,即 l < n - len

void merge_sort(vector<int>& a) {
    int n = a.size();
    vector<int> tmp(n);

    for (int len = 1; len < n; len *= 2) {
        for (int l = 0; l < n - len; l += 2 * len) {
            int mid = l + len - 1;
            int r = min(l + 2 * len - 1, n - 1);
            merge(a, l, mid, r, tmp);
        }
    }
}

归并排序的时间复杂度是 O ( n log ⁡ n ) O(n\log n) O(nlogn),无论是递归还是迭代,空间复杂度都是 O ( n ) O(n) O(n)

2. 快速排序

2.1 基于递归

void quick_sort(vector<int>& a, int l, int r) {
    if (l >= r) return;

    int mid = l + r >> 1;
    int i = l - 1, j = r + 1, x = a[mid];

    while (i < j) {
        while (a[++i] < x);
        while (a[--j] > x);
        if (i < j) swap(a[i], a[j]);
    }

    quick_sort(a, l, j), quick_sort(a, j + 1, r);
}

2.2 基于迭代

void quick_sort(vector<int>& a, int l, int r) {
    if (l >= r) return;

    stack<pair<int, int>> stk;
    stk.emplace(l, r);

    while (!stk.empty()) {
        auto [l, r] = stk.top();
        stk.pop();

        if (l < r) {
            int mid = l + r >> 1;
            int i = l - 1, j = r + 1, x = a[mid];
            while (i < j) {
                while (a[++i] < x);
                while (a[--j] > x);
                if (i < j) swap(a[i], a[j]);
            }
            stk.emplace(l, j);
            stk.emplace(j + 1, r);
        }
    }
}

时间复杂度是 O ( n log ⁡ n ) O(n\log n) O(nlogn),空间复杂度是 O ( log ⁡ n ) O(\log n) O(logn)

你可能感兴趣的:(数据结构与算法,#,AcWing,排序算法,算法,数据结构)