一个Python里最好的分词库!

一个Python里最好的分词库!_第1张图片中文分词,通俗来说,就是将一句(段)话按一定的规则(算法)拆分成词语、成语、单个文字。

中文分词是很多应用技术的前置技术,如搜索引擎、机器翻译、词性标注、相似度分析等,都是先对文本信息分词处理,再用分词结果来搜索、翻译、对比等。

在Python中,最好用的中文分词库是jieba。用“结巴”给一个中文分词库命名,非常生动形象,同时还带有一种程序员式的幽默感。

最好的Python中文分词组件


“结巴”中文分词:做最好的Python中文分词组件

这是jieba分词的slogan,打开jieba分词的GitHub、PyPI源,都会在简介里看到这句标语。这充分体现了jieba开发团队的愿景和目标,在目前看来,jieba已经称得上最好的Python中文分词库。

2022年4月写本文时,jieba在GitHub上已经获得了28.3K的Star,而且数量正在快速增长,足够证明jieba的受欢迎程度非常高。

jieba除了有Python语言的版本,也有C++、JAVA、iOS等十几门编程语言的版本,从PC端到移动端,都可以支持。这点值得给jieba的维护团队点赞,说不定未来,jieba可以做所有语言里最好的中文分词组件。

jieba的使用方法


Step1. 安装jieba

pip install jieba

jieba是第三方库,需要先安装才能使用,直接使用pip安装即可,jieba兼容Python2和Python3,安装命令都一样。如果安装慢,可以添加-i参数指定镜像源。

Step2. 调用jieba进行分词

import jieba

test_content = '迅雷不及掩耳盗铃儿响叮当仁不让世界充满爱之势'
cut_res = jieba.cut(test_content, cut_all=True)
print(list(cut_res))

运行结果:

['迅雷', '迅雷不及', '迅雷不及掩耳', '不及', '掩耳', '掩耳盗铃', 
'儿', '响叮当', '叮当', '当仁不让', '不让', '世界', '充满', '爱',
 '之', '势']

jieba分词的使用非常简单,直接导入jieba库,调用cut()方法,传入需要切分的内容,即可返回分词结果。返回结果是一个可迭代的生成器generator,可以进行遍历,也可以转换成list打印出结果。

jieba分词的四种模式


jieba分词支持四种分词模式:

1.精确模式

试图将句子最精确地切开,适合文本分析。

cut_res = jieba.cut(test_content, cut_all=False)
print('[精确模式]:', list(cut_res))
cut_res = jieba.cut(test_content, cut_all=False, HMM=False)
print('[精确模式]:', list(cut_res))
[精确模式]: ['迅雷不及', '掩耳盗铃', '儿响', '叮', '当仁不让', 
'世界', '充满', '爱之势']
[精确模式]: ['迅雷不及', '掩耳盗铃', '儿', '响', '叮', '当仁不让',
 '世界', '充满', '爱', '之', '势']

精确模式是最常用的分词模式,分词结果不存在冗余数据。

HMM参数默认为True,根据HMM模型(隐马尔可夫模型)自动识别新词。如上面的例子中,HMM为True,结果中将“儿响”、“爱之势”识别成了新词,HMM为False,这些字只能单独成词,分成单个文字。

2.全模式

把句子中所有可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义。

cut_res = jieba.cut(test_content, cut_all=True)
print('[全模式]:', list(cut_res))
[全模式]: ['迅雷', '迅雷不及', '迅雷不及掩耳', '不及', '掩耳', '掩耳盗铃', 
'儿', '响叮当', '叮当', '当仁不让', '不让', '世界', '充满', '爱', '之', '势']

全模式从待分词内容的第一个字开始遍历,将每一个字作为词语的第一个字,返回所有可能的词语,会重复利用词语和字,因此也可能会出现多种含义。

cut_all参数默认为False,即默认不是全模式,将cut_all设置为True,则采用全模式分词。

3.搜索引擎模式

在精确模式的基础上,对长词再次切分,提高召回率,适合用于搜索引擎分词。

cut_res = jieba.cut_for_search(test_content)
print('[搜索引擎模式]:', list(cut_res))
[搜索引擎模式]: ['迅雷', '不及', '迅雷不及', '掩耳', '掩耳盗铃', '儿响', 
'叮', '不让', '当仁不让', '世界', '充满', '爱之势']

搜索引擎模式在精确模式的基础上,对精确模式中的长词,再按照全模式进一步分词,用于搜索时可以匹配到更多的结果。

4.paddle模式

利用PaddlePaddle深度学习框架,训练序列标注(双向GRU)网络模型实现分词。同时支持词性标注。

paddle模式使用需先安装paddlepaddle-tiny,安装命令:pip install paddlepaddle-tiny==1.6.1。目前paddle模式支持jieba v0.40及以上版本。jieba v0.40以下版本,请升级jieba,pip install jieba --upgrade 。

上面是官方的描述,但是,当前已经找不到paddlepaddle-tiny镜像源了,感兴趣可以去PaddlePaddle官网找找方法。

通常不会使用到paddle模式,所以我们了解前面三种模式即可。

5.小结

cut()方法有四个参数,sentence接收待分词的内容;cut_all设置是否使用全模式;HMM设置是否使用HMM模型识别新词;use_paddle设置是否使用panddle模式。

cut_for_search()有两个参数,sentence和HMM。

cut()和cut_for_search()都是返回generator,如果想直接返回列表,可以使用对应的lcut()和lcut_for_search(),用法完全相同。

自定义分词词典


使用jieba分词时,分词结果需要与jieba的词典库进行匹配,才能返回到分词结果中。因此有些词需要用户自定义,才能识别到。

1.添加自定义词语到词典中

jieba.add_word('铃儿响叮当')
jieba.add_word('让世界充满爱')
jieba.add_word('迅雷不及掩耳之势')
lcut_res = jieba.lcut(test_content, cut_all=True, HMM=False)
print('[添加自定义词语]:', lcut_res)
[添加自定义词语]: ['迅雷', '迅雷不及', '迅雷不及掩耳', '不及', '掩耳', '掩耳盗铃',
 '铃儿响叮当', '响叮当', '叮当', '当仁不让', '不让', '让世界充满爱', '世界', 
 '充满', '爱', '之', '势']

add_word()有三个参数,分别是添加的词语、词频和词性,词频和词性可以省略。

添加自定义词语后,自定义词语如果能匹配到,就会返回到分词结果中。如果自定义词语在待分词语句中没有连续的匹配结果,分词结果中不会体现。

2.添加指定的文件作为分词词典

自定义词典格式要和默认词典dict.txt一样,一个词占一行,每一行分三部分:词语、词频(可省略)、词性(可省略),用空格隔开,顺序不可颠倒。file_name若为路径或二进制方式打开的文件,则文件必须为UTF-8编码。

本文自定义一个mydict.txt文本文件,内容如下:

迅雷不及掩耳之势 3 a
掩耳盗铃 3 a
铃儿响叮当 3 a
当仁不让 3 a
让世界充满爱 3 n

文件编码要设置成UTF-8,在PyCharm可以点击File>Settings>File Encodings,将Global Encoding和Project Encoding设置成UTF-8。

一个Python里最好的分词库!_第2张图片

然后使用load_userdict()加载自定义词典。

jieba.load_userdict('mydict.txt')
lcut_res = jieba.lcut(test_content, cut_all=True, HMM=False)
print('[使用自定义词典]:', lcut_res)
[使用自定义词典]: ['迅雷', '迅雷不及', '迅雷不及掩耳', '不及', '掩耳', '掩耳盗铃', 
'铃儿响叮当', '响叮当', '叮当', '当仁不让', '不让', '让世界充满爱', '世界', 
'充满', '爱', '之', '势']

使用了自定义词典,会同时根据jieba的默认词典和自定义词典进行分词。添加自定义词典和添加单个词语的效果一样,区别是可以批量添加,而不用重复调用add_word()。

3.从词典中删除词语

jieba.del_word('不及')
jieba.del_word('不让')
jieba.del_word('之')
lcut_res = jieba.lcut(test_content, cut_all=True, HMM=False)
print('[删除词语]:', lcut_res)
[删除词语]: ['迅雷', '迅雷不及', '迅雷不及掩耳', '掩耳', '掩耳盗铃', '儿', 
'响叮当', '叮当', '当仁不让', '世界', '充满', '爱', '之', '势']

删除的词语一般是语气助词、逻辑连接词等,这些词对于文本分析没有实际意义,反而会成为干扰。

在设置删除的词语后,结果中不再有删除的词语,但对于单个字,会独立成词,所以删除后在结果中也还存在。

4.调整词语的词频

调整词语的词频,调整其在结果中被分出来的可能性,使分词结果满足预期。分两种情况,一种是将分词结果中的一个长词拆分成多个词,另一种是将分词结果中的多个词组成一个词。

lcut_res = jieba.lcut(test_content, cut_all=False, HMM=False)
print('[设置前]:', lcut_res)
jieba.suggest_freq('让世界充满爱', True)
lcut_res = jieba.lcut(test_content, cut_all=False, HMM=False)
print('[设置后]:', lcut_res)
[设置前]: ['迅雷不及', '掩耳盗铃', '儿', '响', '叮', '当仁不让', '世界', '充满', '爱', '之', '势']
[设置后]: ['迅雷不及', '掩耳盗铃', '儿', '响叮当', '仁', '不', '让世界充满爱', '之', '势']

suggest_freq()有两个参数,segment参数表示分词的片段,如果是将一个词拆开,则传入拆开后的元组,如果是指定某个词要作为一个整体,则传入字符串;tune参数为True,则调整词语的词频。

注意:自动计算的词频在使用HMM新词发现功能时可能无效。

关键词提取


关键词提取使用jieba中的analyse模块,基于两种不同的算法,提供了两个不同的方法。

1.基于TF-IDF算法的关键词提取

from jieba import analyse

key_word = analyse.extract_tags(test_content, topK=3)
print('[key_word]:', list(key_word))
key_word = analyse.extract_tags(test_content, topK=3, withWeight=True)
print('[key_word]:', list(key_word))
[key_word]: ['迅雷不及', '儿响', '爱之势']
[key_word]: [('迅雷不及', 1.7078239289857142), ('儿响', 1.7078239289857142), ('爱之势', 1.7078239289857142)]

extract_tags()方法有四个参数,sentence为待提取的文本;topK为返回最大权重关键词的个数,默认值为20;withWeight表示是否返回权重,是的话返回(word, weight)的list,默认为False;allowPOS为筛选指定词性的词,默认为空,即不筛选。

2.基于TextRank算法的关键词提取

key_word = analyse.textrank(test_content, topK=3)
print('[key_word]:', list(key_word))
allow = ['ns', 'n', 'vn', 'v', 'a', 'm', 'c']
key_word = analyse.textrank(test_content, topK=3, allowPOS=allow)
print('[key_word]:', list(key_word))
[key_word]: ['儿响', '世界']
Prefix dict has been built successfully.
[key_word]: ['充满', '儿响', '世界']

textrank()方法与extract_tags()方法用法相似,需要注意的是allowPOS有默认值('ns', 'n', 'vn', 'v'),默认筛选这四种词性的词,可以自己设置。其他参数都与extract_tags()方法相同。

词性标注


词性标注使用jieba中的posseg模块,标注分词后每个词的词性,采用和ictclas兼容的标记法。

from jieba import posseg

pos_word = posseg.lcut(test_content)
print(pos_word)
[pair('迅雷不及', 'i'), pair('掩耳盗铃', 'i'), pair('儿响', 'n'),
 pair('叮', 'v'), pair('当仁不让', 'i'), pair('世界', 'n'), 
 pair('充满', 'a'), pair('爱', 'v'), pair('之', 'u'), pair('势', 'ng')]

posseg.lcut()有两个参数,sentence和HMM。

词性和词性标签参考下表:

标签 含义 标签 含义 标签 含义 标签 含义
n 普通名词 f 方位名词 s 处所名词 t 时间
nr 人名 ns 地名 nt 机构名 nw 作品名
nz 其他专名 v 普通动词 vd 动副词 vn 名动词
a 形容词 ad 副形词 an 名形词 d 副词
m 数量词 q 量词 r 代词 p 介词
c 连词 u 助词 xc 其他虚词 w 标点符号
PER 人名 LOC 地名 ORG 机构名 TIME 时间

返回词语在原文的起止位置


返回词语在原文的起止位置使用jieba中的Tokenize模块,实际调用时使用tokenize()方法。

res = jieba.tokenize(test_content)
for r in res:
    if len(r[0]) > 3:
        print('word:{}\t start:{}\t end:{}'.format(*r))
    elif len(r[0]) > 1:
        print('word:{}\t\t start:{}\t end:{}'.format(*r))
    else:
        print('word:{}\t\t\t start:{}\t end:{}'.format(*r))
word:迅雷不及  start:0   end:4
word:掩耳盗铃  start:4   end:8
word:儿响      start:8   end:10
word:叮       start:10  end:11
word:当仁不让  start:11  end:15
word:世界      start:15  end:17
word:充满      start:17  end:19
word:爱之势    start:19  end:22

tokenize()方法有三个参数,unicode_sentence为待分词内容,注意,只接受unicode编码内容;mode参数为指定分词模式,如需要使用搜索引擎模式,则设置mode='search';HMM默认为True。

以上就是jieba分词的常用功能介绍,更多用法请从下方参考文档访问GitHub。

参考文档:https://github.com/fxsjy/jieba

 
   
推荐阅读:
入门: 最全的零基础学Python的问题  | 零基础学了8个月的Python  | 实战项目 |学Python就是这条捷径
干货:爬取豆瓣短评,电影《后来的我们》 | 38年NBA最佳球员分析 |   从万众期待到口碑扑街!唐探3令人失望  | 笑看新倚天屠龙记 | 灯谜答题王 |用Python做个海量小姐姐素描图 |碟中谍这么火,我用机器学习做个迷你推荐系统电影
趣味:弹球游戏  | 九宫格  | 漂亮的花 | 两百行Python《天天酷跑》游戏!
AI: 会做诗的机器人 | 给图片上色 | 预测收入 | 碟中谍这么火,我用机器学习做个迷你推荐系统电影
小工具: Pdf转Word,轻松搞定表格和水印! | 一键把html网页保存为pdf!|  再见PDF提取收费! | 用90行代码打造最强PDF转换器,word、PPT、excel、markdown、html一键转换 | 制作一款钉钉低价机票提示器! |60行代码做了一个语音壁纸切换器天天看小姐姐!|

年度爆款文案

  • 1).卧槽!Pdf转Word用Python轻松搞定!

  • 2).学Python真香!我用100行代码做了个网站,帮人PS旅行图片,赚个鸡腿吃

  • 3).首播过亿,火爆全网,我分析了《乘风破浪的姐姐》,发现了这些秘密 

  • 4).80行代码!用Python做一个哆来A梦分身 

  • 5).你必须掌握的20个python代码,短小精悍,用处无穷 

  • 6).30个Python奇淫技巧集 

  • 7).我总结的80页《菜鸟学Python精选干货.pdf》,都是干货 

  • 8).再见Python!我要学Go了!2500字深度分析!

  • 9).发现一个舔狗福利!这个Python爬虫神器太爽了,自动下载妹子图片

点阅读原文,看B站我的视频!

你可能感兴趣的:(python,java,编程语言,人工智能,大数据)