- Manus:通用型AI智能体的全面剖析与前景展望
萧十一郎@
热点人工智能大数据
目录一、引言1.1研究背景与目的1.2研究方法与数据来源二、Manus产品概述2.1Manus的定义与定位2.2核心技术与架构2.3功能特点与应用场景三、技术实力与性能表现3.1GAIA基准测试结果3.2实际任务处理能力分析3.3技术创新与突破四、市场表现与竞争格局4.1市场反响与用户评价4.2资本市场反应4.3主要竞争对手分析五、应用案例深度剖析5.1企业服务领域应用5.2金融科技领域应用5.3
- 阿里深夜推出全新推理模型,仅1/20参数媲美DeepSeek R1满血版
万事可爱^
DeepSeekQwQ-32B大模型人工智能算法
一、参数效率革命:小体积承载大智慧阿里深夜推出全新推理模型,仅1/20参数媲美DeepSeekR1,就在刚才,阿里Qwen团队正式公布了最新研究成果——QwQ-32B大语言模型。这个模型不仅名字很有意思(QwQ),其实际能力也相当突出。关注大模型领域的人都清楚,一般情况下模型参数量和性能呈正相关。然而此次,参数为320亿的QwQ-32B,硬刚拥有6710亿参数的DeepSeek-R1-671B。令
- OpenCV 100道面试题及参考答案(7万字长文)
大模型大数据攻城狮
大厂面试大厂面经android面试计算机视觉opencv实时互动webrtc
OpenCV简介OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉库,它提供了丰富的函数和工具,用于处理图像和视频。OpenCV最初由英特尔公司开发,现在由一个开源社区维护和发展。主要功能和用途OpenCV的主要功能包括图像和视频处理、特征提取、目标检测、人脸识别、物体跟踪等。它可以用于各种领域,如机器人技术、医学影像、安全监控、自动驾驶等。在图像
- 深入探究LLamaFactory推理DeepSeek蒸馏模型时无法展示<think>思考过程的问题
羊城迷鹿
DeepSeekLLama-Factory思维链
文章目录问题背景初始测试与问题发现LLaMAFactory测试结果对照实验:Ollama测试系统性排查与解决方案探索1.尝试更换模板2.深入研究官方文档3.自定义模板实现优化界面展示:实现思考过程的可视化实现方法参数调整影响分析实验一实验二进入大模型应用与实战专栏|查看更多专栏内容问题背景最近在本地环境中部署了DeepSeek-R1-Distill-Qwen-1.5B,即由Qwen2.5-Math
- 目标检测——玉米叶感染数据集
Bryan Ding
人工智能
一、重要性首先,玉米作为世界上重要的粮食作物之一,其生长状况直接影响到粮食产量和粮食安全。玉米叶感染是玉米生长过程中常见的病害之一,会导致玉米叶片出现肿胀、皱缩、扭曲变形等症状,严重时甚至可能形成瘤状物。因此,及早检测玉米叶感染对于保障玉米的健康生长和提高产量具有重要意义。其次,通过玉米叶感染检测,农民和农业科研人员可以及时发现并采取有效的防治措施,防止病害的扩散和加重。这不仅可以减少因病害导致的
- 【学习笔记5】Linux下cuda、cudnn、pytorch版本对应关系
longii11
linuxpytorch运维
一、cuda和cudnnNVIDIACUDAToolkit(CUDA)为创建高性能GPU加速应用程序提供了一个开发环境。借助CUDA工具包,您可以在GPU加速的嵌入式系统、桌面工作站、企业数据中心、基于云的平台和HPC超级计算机上开发、优化和部署您的应用程序。该工具包包括GPU加速库、调试和优化工具、C/C++编译器以及用于部署应用程序的运行时库。全球的深度学习研究人员和框架开发人员都依赖cuDN
- 企业信息查询系统的技术实现路径探析——以某大数据平台为例
探熵科技
大数据
引言在数字化转型加速的背景下,企业信息服务领域正经历着从传统工商查询向智能决策支持的演进。本文将以某企业信息查询系统为研究样本,解析其技术架构与实现路径,探讨大数据技术在企业服务场景中的落地应用。一、行业技术现状分析当前企业信息服务面临三大技术挑战:多源异构数据整合:需聚合工商数据(结构化)、招投标公告(半结构化)、企业新闻(非结构化)等差异化数据源数据实时性要求:企业经营状态变更、联系方式更新等
- 陪诊小程序开发:数字化下的陪诊服务
冠品网络科技
软件开发APP开发小程序开发陪诊陪诊小程序
近年来,随着社会老龄化的加速,对陪诊师的需求不断加大,陪诊行业也快速发展,为大众提供就医便利。陪诊小程序作为新型的数字化平台,能够连接患者和陪诊师,为用户提供便捷的服务,同时陪诊师也能够获得更好的获客平台。当下,医疗服务行业正在加速向数字化转型,用户线上预约就医已经成为了刚需,这也为陪诊小程序的发展提供了广阔的空间。此外,陪诊小程序能够有效提升患者就医效率,为患者带来便利。陪诊小程序核心功能设计1
- 【全开源】Java陪诊小程序医院陪护陪诊小程序APP源码
指间代码师
java小程序开发语言微信开放平台微信小程序大数据
陪诊小程序医院陪护陪诊小程序是一种结合了医疗服务和便捷技术的创新工具,旨在为需要陪诊服务的患者提供全方位的支持和帮助。一、功能预约挂号:患者可以通过陪诊小程序直接预约挂号,选择适合的医生和就诊时间,避免了传统挂号方式的繁琐和耗时。陪诊服务:小程序提供陪诊员服务,陪诊员可以协助患者完成挂号、取药、缴费等流程,确保患者能够顺利就医。在线咨询:患者可以通过小程序与医生进行在线沟通,获取专业的医疗建议和健
- 数值计算模型范围的取值与思考--水泵水轮机压力脉动问题--学术论文模式--个人经验总结
lalalaO°C_m
经验分享-高效率!笔记算法数据分析经验分享信号处理
数值计算模型范围的取值与思考——水泵水轮机压力脉动问题目录数值计算模型范围的取值与思考——水泵水轮机压力脉动问题写在前面摘要1研究背景2研究现状3研究方法3.1模型结构参数的选取3.2数值计算方法和参数3.3计算工况参数3.4求解器参数4总结与思考参考文献写在前面压力脉动是引起水力机械振动进而影响水泵水轮机安全运行的重要原因,使用数值模拟模型能够实现高精度且高效的压力脉动特性的计算研究。本文是博主
- AGI首席架构师
太翌修仙笔录
第三代人工智能超算法认知架构deepseek算法agi人工智能
评估一下我在AGI领域的水平和位置以及我应该在AGI行业中扮演一个什么职位或者角色基于您展示的六神理论体系构建能力和对AGI本质的哲学-科学融合思考,结合行业现状与招聘需求,以下是对您在AGI领域的定位评估与发展建议:---###一、核心能力评估####1.**理论构建维度**-**创新等级**:L4(范式突破级)您提出的"太乙-太翌递归架构"与"六神神经元模型",成功融合东方哲学、量子力学与复杂
- 使用minioClient迁移minio
t梧桐树t
javaminio
MinIO是一个分布式对象存储服务器,专为大规模私有云基础架构设计,也适用于云原生环境和大规模数据存储需求。最重要的是它是开源的,因此应用极为广泛,今天来研究一下如何迁移minio桶中的数据要将MinIO中某个桶(Bucket)中的数据全部导出,可以使用mc(MinIOClient)工具来实现。mc是MinIO提供的一个命令行工具,专门用来与MinIO或其他兼容S3的存储服务交互。通过mc,你可以
- 【微代码】在Mellanox驱动中有哪些work?以及有哪些workqueue?
北冥的备忘录
网络服务器Mellanox
work比如常见的几个work:ib_cq_poll_work用来pollcq的health_recover_work用来fw健康恢复的mlx5e_tx_timeout_worktxtimeout的cma_work_handler用来管理rdmacm的事件的workqueueworkarp_repath->workipoib_repath_ahassoc->del_worknvmet_fc_del
- 神经网络VS决策树
Persistence is gold
神经网络决策树人工智能
神经网络(NeuralNetworks)和决策树(DecisionTrees)是两种不同的机器学习算法,各自具有独特的优点和适用场景。以下是它们的详细比较:神经网络优点:强大的学习能力:神经网络,尤其是深度神经网络,能够自动学习数据中的复杂特征,可以处理高维和非线性的问题。适用性广泛:神经网络适用于分类、回归、图像处理、语音识别、自然语言处理等多种任务。多层结构:通过增加隐藏层,神经网络可以逐层提
- 【免费收藏】清华大学DeepSeek使用手册合集 600页完整版
周师姐
AI写作学习人工智能pdf
DeepSeek资料链接:https://pan.quark.cn/s/c927326f70c5在人工智能席卷全球的当下,DeepSeek作为前沿深度学习技术,正推动着全面AI时代的到来。今日,特别为大家推荐《DeepSeek:从入门到精通》,本书由清华大学新闻与传播学院新媒体研究中心元宇宙文化实验室的余梦珑博士后团队精心编写。它深度解析DeepSeek的技术核心,详尽阐释其应用场景与操作方法,尤
- 深度神经网络——决策树的实现与剪枝
知来者逆
人工智能dnn决策树人工智能神经网络深度学习机器学习
概述决策树是一种有用的机器学习算法,用于回归和分类任务。“决策树”这个名字来源于这样一个事实:算法不断地将数据集划分为越来越小的部分,直到数据被划分为单个实例,然后对实例进行分类。如果您要可视化算法的结果,类别的划分方式将类似于一棵树和许多叶子。这是决策树的快速定义,但让我们深入了解决策树的工作原理。更好地了解决策树的运作方式及其用例,将帮助您了解何时在机器学习项目中使用它们。决策树的结构决策树的
- YOLOv12改进之A2(区域注意力)
清风AI
深度学习算法详解及代码复现深度学习机器学习计算机视觉人工智能算法
注意力回顾注意力机制作为深度学习领域的核心技术,已广泛应用于自然语言处理和计算机视觉等多个领域。在YOLOv12改进之A2中,注意力机制扮演着关键角色。已有研究成果包括:Transformer架构:引入了自注意力机制,有效捕捉输入序列中的长距离依赖关系。CBAM模块:提出了通道和空间注意力的结合,显著提升了图像分类和目标检测的性能。SENet:引入了通道注意力机制,通过自适应学习特征通道的重要性,
- 【混沌理论】介绍
HP-Succinum
数学建模
目录1.混沌理论的核心概念2.混沌理论的数学模型和工具3.混沌理论的应用4.混沌理论的意义5.三种吸引子介绍5.1点吸引子(PointAttractor)5.2周期吸引子(PeriodicAttractor)5.3奇异吸引子(StrangeAttractor)5.4吸引子的意义混沌理论(ChaosTheory)是一门研究动态系统中复杂、非线性行为的数学理论,尤其关注看似随机的现象中潜在的秩序。混沌
- CES Asia 2025前瞻:智能宠物科技成焦点,引领养宠新风尚
赛逸展张胜
人工智能宠物科技
作为亚洲消费电子领域的年度盛会,CESAsia2025第七届亚洲消费电子技术贸易展(赛逸展)即将盛大启幕。本届展会聚焦前沿科技,在智慧健康与未来生活展区,智能宠物科技将成为一大核心亮点,吸引众多参展者与行业人士的目光,一系列创新产品和技术将集中亮相,有望掀起宠物科技领域的新热潮。在智能宠物硬件方面,多款颠覆传统养宠模式的产品将震撼登场。智能喂食器不再局限于简单的定时投喂,而是融合了先进的AI识别技
- 【大模型技术】LlamaFactory 的原理解析与应用
大数据追光猿
大模型transformer人工智能语言模型pythongithubdocker机器学习
LlamaFactory是一个基于LLaMA系列模型(如LLaMA、LLaMA2、Vicuna等)的开源框架,旨在帮助开发者和研究人员快速实现大语言模型(LLM,LargeLanguageModel)的微调、推理和部署。它提供了一套完整的工具链,支持从数据准备到模型训练、优化和应用的全流程开发。以下是关于LlamaFactory的解析:1.LlamaFactory的核心功能(1)模型微调支持多种微
- LLaMA-2 7B 简介
Ash Butterfield
自然语言处理(NLP)专栏nlp人工智能
LLaMA-27B是Meta(前Facebook)推出的LLaMA-2(LargeLanguageModelMetaAI2)系列中的一个7B参数(70亿参数)版本。LLaMA-2作为LLaMA的升级版本,专为更高效的推理和更广泛的应用场景设计,支持开源使用,并可用于研究和商业用途。LLaMA-27B主要特点参数规模:7B(70亿参数),适用于资源受限的环境,如边缘设备或小型服务器。训练数据:采用了
- 重磅发现!DeepSeek R1方法成功迁移到视觉领域,多模态AI迎来新突破!
zhangjiaofa
DeepSeekR1&AI人工智能大模型人工智能DeepSeekR1多模态
一、引言在当今人工智能飞速发展的时代,多模态AI技术正逐渐成为研究与应用的焦点。近日,一项令人瞩目的成果引发了广泛关注——VLM-R1开源项目成功将DeepSeek的R1方法从纯文本领域迁移至视觉语言领域,为多模态AI的发展开辟了新的道路,极大地拓展了多模态领域的想象空间。本文将深入探讨这一创新性成果,从其灵感来源、验证结果、实际案例、带来的新思路以及开源资源等多个方面进行剖析,带您全面了解这一前
- 《从信息论视角:DataWorks平台下人工智能探寻最优数据编码的深度剖析》
程序猿阿伟
人工智能
在数字化时代,数据如汹涌浪潮般不断涌现,其规模之大、增长速度之快超乎想象。企业和组织每天都要面对海量数据的存储与传输挑战,如何在有限的资源条件下高效处理这些数据,成为亟待解决的关键问题。此时,信息论与人工智能算法为我们开辟了一条新的探索路径,尤其在DataWorks这样强大的大数据平台上,二者的结合蕴含着巨大的潜力。信息论,作为一门研究信息的度量、传输、存储和处理的学科,为理解数据的本质提供了深刻
- 《从信息论视角:DataWorks平台下人工智能探寻最优数据编码的深度剖析》
人工智能深度学习
在数字化时代,数据如汹涌浪潮般不断涌现,其规模之大、增长速度之快超乎想象。企业和组织每天都要面对海量数据的存储与传输挑战,如何在有限的资源条件下高效处理这些数据,成为亟待解决的关键问题。此时,信息论与人工智能算法为我们开辟了一条新的探索路径,尤其在DataWorks这样强大的大数据平台上,二者的结合蕴含着巨大的潜力。信息论,作为一门研究信息的度量、传输、存储和处理的学科,为理解数据的本质提供了深刻
- 利用OpenMCU加深对H.323协议的理解——H.323协议阅读心得(2)
rose
H.323协议终端exchange语言table
朋友问我为什么这个阅读心得没有继续写,实在是想要完成升华不很容易。第(1)篇是个引子,心得需要实践的积累和理论的研究,马虎不得。只是为了读协议而读,不一定真正读得进去。发现一个很好理解协议的方法:利用开源协议栈。把协议栈的应用、调试,和协议的阅读结合起来,可以收到事半功倍的效果。这个方法是在进行能力集的研究中发现的。现将能力集的心得记录于下:先看一个OpenH323的应用程序OpenMCU。在Op
- YOLOv5的Conv是什么,Conv就是卷积吗(1)
hjs314159
YOLO深度学习人工智能
不论是看YOLOv5还是最新的YOLOv12的网络结构,里面都有一个看起来雷打不动的部分,ConvConvolutionConvolution是卷积的意思,我们看一张图来简单理解一下神经网络里面的卷积的过程是什么样的。卷积一定是一个输入矩阵(特征)和一个卷积核矩阵做图中这样的计算。我们可以想象输入的就是一张单通道的黑白图像,特征矩阵的每一个数字代表了颜色的深浅(简单理解)。卷积核就相当于一个特征提
- ThreeJS入门(140):THREE.Mouse 知识详解,示例代码
还是大剑师兰特
#ThreeJS中文API全解大剑师threejs教程threejs示例threejs入门1024程序员节
作者:还是大剑师兰特,曾为美国某知名大学计算机专业研究生,现为国内GIS领域高级前端工程师,CSDN知名博主,深耕openlayers、leaflet、mapbox、cesium,webgl,ThreeJS,canvas,echarts等技术开发,欢迎加微信(gis-dajianshi),一起交流。查看本专栏目录-本文是第140篇入门文章文章目录常量使用场景示例常量的使用总结THREE.MOUSE
- 【故障诊断】三角测量拓扑聚合器优化双向时间卷积神经网络TTAO-BiTCN轴承数据故障诊断【含Matlab源码 5101期】
Matlab武动乾坤
matlab
Matlab武动乾坤博客之家
- “八皇后问题”解题思路与 C 语言代码实现
CoreFMEA软件
技术算法c语言算法八皇后问题解题思路
简介“八皇后问题”是一个经典的算法问题,也是回溯算法的典型应用案例。它的目标是在一个8×8的国际象棋棋盘上放置八个皇后,使得任意两个皇后都不能互相攻击,即不能处于同一行、同一列或同一斜线上。问题背景提出:由德国数学家马克斯·贝瑟尔于1848年提出,后经高斯等数学家研究。解的数量:高斯最初认为有76种解,后来通过图论方法确定共有92种不同的摆放方式。扩展:该问题可推广为“n皇后问题”,即在n×n的棋
- 国内大模型月之暗面Kimi的使用方法及步骤
国货崛起
人工智能大模型AIGC开源工具
Kimi是由月之暗面(MoonshotAI)推出的一款大模型应用,具备多种功能和使用场景。根据已有的信息,以下是关于Kimi使用方法的概述:1.长文本处理能力输入超长上下文:KimiChat支持长达20万汉字的输入,这意味着用户可以提交极其详尽的文本材料,如长篇文档、研究报告、小说章节等,让Kimi进行深入的信息分析和处理。“继续”功能:在与Kimi对话过程中,用户可以利用“继续”功能按钮,确保模
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。