图片加载库分析之Glide解析(一)

图片加载框架Glide在我们实战中,运用的很频繁,但是glide为我们做的太多了,以至于我们忽略了处理图片很多基础知识点,本文基于Glide 4.80全方面的分析Glide为我们做的事情,在分析之前还是老规矩,花如此多事件分析的图片加载框架能带给我们什么?
1.Glide的内存缓存仅仅只有Lrucache么?
2.Glide的磁盘缓存默认是开的还是要手动设置的,还有很多人设置

RequestOptions().diskCacheStrategy(DiskCacheStrategy.RESOURCE);

这里面的DiskCacheStrategy.RESOURCE 和DiskCacheStrategy.DATA的区别是啥,默认又是哪个呢?
3,在Glide的源码中会看到BitmapPool也是一个Lru,他的作用是什么?
4.很多人在用Glide时,获取到一个Bitmap或者Drawable后防止oom还会用BitmapFactory.Options去压缩图片,如图所示

GlideRequest.into(new Target() {
@Override
public void onResourceReady(@NonNull Drawable resource, @Nullable Transition transition) {
//很多人拿到此bitmap还会去压缩图片
}

真的有必要么?
接下来带着问题去分析源码吧
当调用Glide.with时,间接会调用getRetriever在调用with方法

 @NonNull
  private static RequestManagerRetriever getRetriever(@Nullable Context context) {
    // Context could be null for other reasons (ie the user passes in null), but in practice it will
    // only occur due to errors with the Fragment lifecycle.
    Preconditions.checkNotNull(
        context,
        "You cannot start a load on a not yet attached View or a Fragment where getActivity() "
            + "returns null (which usually occurs when getActivity() is called before the Fragment "
            + "is attached or after the Fragment is destroyed).");
    return Glide.get(context).getRequestManagerRetriever();
  }

来看下getRequestManagerRetriever的配置

@NonNull
  public static Glide get(@NonNull Context context) {
    if (glide == null) {
      GeneratedAppGlideModule annotationGeneratedModule =
          getAnnotationGeneratedGlideModules(context.getApplicationContext());
      synchronized (Glide.class) {
        if (glide == null) {
          checkAndInitializeGlide(context, annotationGeneratedModule);
        }
      }
    }

    return glide;
  }

这里annotationGeneratedModule其实就是注解处理器,用过Glide的人都知道,再添加了注解和注解解析器的依赖后

compile 'com.github.bumptech.glide:annotations:4.8.0'
annotationProcessor 'com.github.bumptech.glide:compiler:4.8.0'

来看一下

/** Ensures that Glide's generated API is created for the Gallery sample. */
@GlideModule
public final class GalleryModule extends AppGlideModule {
  // Intentionally empty.


    @Override
    public void applyOptions(@NonNull Context context, @NonNull GlideBuilder builder) {
        super.applyOptions(context, builder);
    }
}

然后builder里有各种参数,比如在Glide中如果你设置了
设置磁盘缓存,默认的磁盘路径和大小是image_manager_disk_cache 和 250M左右,可以重新实现这个接口,修改目录和大小。
甚至可以更改图片的下载方式

@GlideModule
public final class OkHttpLibraryGlideModule extends LibraryGlideModule {
  @Override
  public void registerComponents(
      @NonNull Context context, @NonNull Glide glide, @NonNull Registry registry) {
    registry.replace(GlideUrl.class, InputStream.class, new OkHttpUrlLoader.Factory());
  }
}

用okhttp3加载
接下来checkAndInitializeGlide会间接调用initializeGlide

@GuardedBy("Glide.class")
  @SuppressWarnings("deprecation")
  private static void initializeGlide(
      @NonNull Context context,
      @NonNull GlideBuilder builder,
      @Nullable GeneratedAppGlideModule annotationGeneratedModule) {
    Context applicationContext = context.getApplicationContext();
    List manifestModules = Collections.emptyList();
    if (annotationGeneratedModule == null || annotationGeneratedModule.isManifestParsingEnabled()) {
      manifestModules = new ManifestParser(applicationContext).parse();
    }

    if (annotationGeneratedModule != null
        && !annotationGeneratedModule.getExcludedModuleClasses().isEmpty()) {
      Set> excludedModuleClasses = annotationGeneratedModule.getExcludedModuleClasses();
      Iterator iterator = manifestModules.iterator();
      while (iterator.hasNext()) {
        com.bumptech.glide.module.GlideModule current = iterator.next();
        if (!excludedModuleClasses.contains(current.getClass())) {
          continue;
        }
        if (Log.isLoggable(TAG, Log.DEBUG)) {
          Log.d(TAG, "AppGlideModule excludes manifest GlideModule: " + current);
        }
        iterator.remove();
      }
    }

    if (Log.isLoggable(TAG, Log.DEBUG)) {
      for (com.bumptech.glide.module.GlideModule glideModule : manifestModules) {
        Log.d(TAG, "Discovered GlideModule from manifest: " + glideModule.getClass());
      }
    }

    RequestManagerRetriever.RequestManagerFactory factory =
        annotationGeneratedModule != null
            ? annotationGeneratedModule.getRequestManagerFactory()
            : null;
    builder.setRequestManagerFactory(factory);
    for (com.bumptech.glide.module.GlideModule module : manifestModules) {
      module.applyOptions(applicationContext, builder);
    }
    if (annotationGeneratedModule != null) {
      annotationGeneratedModule.applyOptions(applicationContext, builder);
    }
    Glide glide = builder.build(applicationContext);
    for (com.bumptech.glide.module.GlideModule module : manifestModules) {
      try {
        module.registerComponents(applicationContext, glide, glide.registry);
      } catch (AbstractMethodError e) {
        throw new IllegalStateException(
            "Attempting to register a Glide v3 module. If you see this, you or one of your"
                + " dependencies may be including Glide v3 even though you're using Glide v4."
                + " You'll need to find and remove (or update) the offending dependency."
                + " The v3 module name is: "
                + module.getClass().getName(),
            e);
      }
    }
    if (annotationGeneratedModule != null) {
      annotationGeneratedModule.registerComponents(applicationContext, glide, glide.registry);
    }
    applicationContext.registerComponentCallbacks(glide);
    Glide.glide = glide;
  }

其他的都是一些自定义的流程,重点看下这句话

Glide glide = builder.build(applicationContext);

会间接调用如下方法

@NonNull
  Glide build(@NonNull Context context) {
    if (sourceExecutor == null) {
      sourceExecutor = GlideExecutor.newSourceExecutor();
    }

    if (diskCacheExecutor == null) {
      diskCacheExecutor = GlideExecutor.newDiskCacheExecutor();
    }

    if (animationExecutor == null) {
      animationExecutor = GlideExecutor.newAnimationExecutor();
    }

    if (memorySizeCalculator == null) {
      memorySizeCalculator = new MemorySizeCalculator.Builder(context).build();
    }

    if (connectivityMonitorFactory == null) {
      connectivityMonitorFactory = new DefaultConnectivityMonitorFactory();
    }

    if (bitmapPool == null) {
      int size = memorySizeCalculator.getBitmapPoolSize();
      if (size > 0) {
        bitmapPool = new LruBitmapPool(size);
      } else {
        bitmapPool = new BitmapPoolAdapter();
      }
    }

    if (arrayPool == null) {
      arrayPool = new LruArrayPool(memorySizeCalculator.getArrayPoolSizeInBytes());
    }

    if (memoryCache == null) {
      memoryCache = new LruResourceCache(memorySizeCalculator.getMemoryCacheSize());
    }

    if (diskCacheFactory == null) {
      diskCacheFactory = new InternalCacheDiskCacheFactory(context);
    }

    if (engine == null) {
      engine =
          new Engine(
              memoryCache,
              diskCacheFactory,
              diskCacheExecutor,
              sourceExecutor,
              GlideExecutor.newUnlimitedSourceExecutor(),
              animationExecutor,
              isActiveResourceRetentionAllowed);
    }

    if (defaultRequestListeners == null) {
      defaultRequestListeners = Collections.emptyList();
    } else {
      defaultRequestListeners = Collections.unmodifiableList(defaultRequestListeners);
    }

    RequestManagerRetriever requestManagerRetriever =
        new RequestManagerRetriever(requestManagerFactory);

    return new Glide(
        context,
        engine,
        memoryCache,
        bitmapPool,
        arrayPool,
        requestManagerRetriever,
        connectivityMonitorFactory,
        logLevel,
        defaultRequestOptionsFactory,
        defaultTransitionOptions,
        defaultRequestListeners,
        isLoggingRequestOriginsEnabled,
        isImageDecoderEnabledForBitmaps);
  }

我们可以看到sourceExecutor就是下载图片的线程,diskCacheExecutor是执行硬盘缓存逻辑的线程
animationExecutor是执行动画逻辑的线程
里面分别开了线程池来实现
memorySizeCalculator里面封装了一些信息如下

Calculation complete, Calculated memory cache size: 15.34 MB, pool size: 7.67 MB, byte array size: 4.19 MB, memory class limited? false, max size: 161 MB, memoryClass: 384, isLowMemoryDevice: false

表示内存缓存,图片的poolsize,这其实和bitmapPool有关,bitmapPool其实是压缩过程中为了防止过多的开辟空间在bitmapfactory的属性中有个inBitmap属性,存放的就是bitmap,其实就是这个pool了
里面也是由lru管理的
arraypool就后面可以知道其实就是对于byte[]的管理,简单来说就是对于输出流的优化
memoryClass 可用最大的内存
算法其实和屏幕 宽在乘以一些系数有关具体可以看MemorySizeCalculator类
接下来就是初始化内存缓存和硬盘缓存了
然后把所有的对象放到engin中
接下来创建RequestManagerRetriever对象简单来说是管理fragment的对象都知道Glide的with方法要传当前对象的参数,不然很有可能图片的释放不及时,从而造成内存泄漏,那他是怎么根据这个context的逻辑找到是fragment还是activity的呢,就是这个类的用途所在,里面也关联了Lifecycle,简单来说就是能实时知道页面的状态,从而更好的管理,很多文章都做了实现原理的分析,本文就不深入了
接下来把engine和RequestManagerRetriever封装到Glide中
在Glide初始化的时候还创建了很多的解析器封装到了registry中
比如要把要下载的urI转成nputStream,InputStream解析成bitmap等,都是在此解析器中返回一个RequestManager对象
现在此方法就熟悉很多了

  @NonNull
  public static RequestManager with(@NonNull Activity activity) {
    return getRetriever(activity).get(activity);
  }

在看下load方法,间接调用

@SuppressWarnings("deprecation")
public class GlideRequests extends RequestManager {
  public GlideRequests(@NonNull Glide glide, @NonNull Lifecycle lifecycle,
      @NonNull RequestManagerTreeNode treeNode, @NonNull Context context) {
    super(glide, lifecycle, treeNode, context);
  }

  @Override
  @CheckResult
  @NonNull
  public  GlideRequest as(@NonNull Class resourceClass) {
    return new GlideRequest<>(glide, this, resourceClass, context);
  }

可以看到最终返回的是GlideRequest对象,里面封装了Gilde,RequestManager,图片显示的的过渡参数,好,基本的分析完了
接下来分析最重要的into方法

private > Y into(
      @NonNull Y target,
      @Nullable RequestListener targetListener,
      BaseRequestOptions options,
      Executor callbackExecutor) {
    Preconditions.checkNotNull(target);
    if (!isModelSet) {
      throw new IllegalArgumentException("You must call #load() before calling #into()");
    }

    Request request = buildRequest(target, targetListener, options, callbackExecutor);

    Request previous = target.getRequest();
    if (request.isEquivalentTo(previous)
        && !isSkipMemoryCacheWithCompletePreviousRequest(options, previous)) {
      // If the request is completed, beginning again will ensure the result is re-delivered,
      // triggering RequestListeners and Targets. If the request is failed, beginning again will
      // restart the request, giving it another chance to complete. If the request is already
      // running, we can let it continue running without interruption.
      if (!Preconditions.checkNotNull(previous).isRunning()) {
        // Use the previous request rather than the new one to allow for optimizations like skipping
        // setting placeholders, tracking and un-tracking Targets, and obtaining View dimensions
        // that are done in the individual Request.
        previous.begin();
      }
      return target;
    }

    requestManager.clear(target);
    target.setRequest(request);
    requestManager.track(target, request);

    return target;
  }

可以看到这里返回了一个request的接口对象,有三个实现类,分别是singleRequest,errorRequest和thumbnailRequest
这里主要看的是singleRequest,如果有用到图片加载缩略图的话,可以到thumbnailRequest去看
在singleRequest中

 @SuppressWarnings("GuardedBy")
  private SingleRequest(
      Context context,
      GlideContext glideContext,
      @NonNull Object requestLock,
      @Nullable Object model,
      Class transcodeClass,
      BaseRequestOptions requestOptions,
      int overrideWidth,
      int overrideHeight,
      Priority priority,
      Target target,
      @Nullable RequestListener targetListener,
      @Nullable List> requestListeners,
      RequestCoordinator requestCoordinator,
      Engine engine,
      TransitionFactory animationFactory,

可以看到封装了包括GlideContext,宽高,图片质量,requestOptions(请求配置),回调的线程callbackExecutor等一系列的参数,然后调用begin方法进行请求或者取缓存内容

/** Starts tracking the given request. */
  public void runRequest(@NonNull Request request) {
    requests.add(request);
    if (!isPaused) {
      request.begin();
    } else {
      request.clear();
      if (Log.isLoggable(TAG, Log.VERBOSE)) {
        Log.v(TAG, "Paused, delaying request");
      }
      pendingRequests.add(request);
    }
  }

看下begin方法

@Override
  public void begin() {
    synchronized (requestLock) {
      assertNotCallingCallbacks();
      stateVerifier.throwIfRecycled();
      startTime = LogTime.getLogTime();
      if (model == null) {
        if (Util.isValidDimensions(overrideWidth, overrideHeight)) {
          width = overrideWidth;
          height = overrideHeight;
        }
        // Only log at more verbose log levels if the user has set a fallback drawable, because
        // fallback Drawables indicate the user expects null models occasionally.
        int logLevel = getFallbackDrawable() == null ? Log.WARN : Log.DEBUG;
        onLoadFailed(new GlideException("Received null model"), logLevel);
        return;
      }

      if (status == Status.RUNNING) {
        throw new IllegalArgumentException("Cannot restart a running request");
      }

      // If we're restarted after we're complete (usually via something like a notifyDataSetChanged
      // that starts an identical request into the same Target or View), we can simply use the
      // resource and size we retrieved the last time around and skip obtaining a new size, starting
      // a new load etc. This does mean that users who want to restart a load because they expect
      // that the view size has changed will need to explicitly clear the View or Target before
      // starting the new load.
      if (status == Status.COMPLETE) {
        onResourceReady(resource, DataSource.MEMORY_CACHE);
        return;
      }

      // Restarts for requests that are neither complete nor running can be treated as new requests
      // and can run again from the beginning.

      status = Status.WAITING_FOR_SIZE;
      if (Util.isValidDimensions(overrideWidth, overrideHeight)) {
        onSizeReady(overrideWidth, overrideHeight);
      } else {
        target.getSize(this);
      }

      if ((status == Status.RUNNING || status == Status.WAITING_FOR_SIZE)
          && canNotifyStatusChanged()) {
        target.onLoadStarted(getPlaceholderDrawable());
      }
      if (IS_VERBOSE_LOGGABLE) {
        logV("finished run method in " + LogTime.getElapsedMillis(startTime));
      }
    }
  }

这里看到如果宽高都是无效的话,就会获取加载图片的宽高,那宽高合时加载完呢,其实在onPreDraw回调中会获得此view的宽高,然后调用onSizeReady,如果有效的就直接调用
可以看到在viewTarget里

private void notifyCbs(int width, int height) {
      // One or more callbacks may trigger the removal of one or more additional callbacks, so we
      // need a copy of the list to avoid a concurrent modification exception. One place this
      // happens is when a full request completes from the in memory cache while its thumbnail is
      // still being loaded asynchronously. See #2237.
      for (SizeReadyCallback cb : new ArrayList<>(cbs)) {
        cb.onSizeReady(width, height);
      }
    }

调用了onSizeReady方法,来看下实现

public void onSizeReady(int width, int height) {
    stateVerifier.throwIfRecycled();
    synchronized (requestLock) {
      if (IS_VERBOSE_LOGGABLE) {
        logV("Got onSizeReady in " + LogTime.getElapsedMillis(startTime));
      }
      if (status != Status.WAITING_FOR_SIZE) {
        return;
      }
      status = Status.RUNNING;

      float sizeMultiplier = requestOptions.getSizeMultiplier();
      this.width = maybeApplySizeMultiplier(width, sizeMultiplier);
      this.height = maybeApplySizeMultiplier(height, sizeMultiplier);

      if (IS_VERBOSE_LOGGABLE) {
        logV("finished setup for calling load in " + LogTime.getElapsedMillis(startTime));
      }
      loadStatus =
          engine.load(
              glideContext,
              model,
              requestOptions.getSignature(),
              this.width,
              this.height,
              requestOptions.getResourceClass(),
              transcodeClass,
              priority,
              requestOptions.getDiskCacheStrategy(),
              requestOptions.getTransformations(),
              requestOptions.isTransformationRequired(),
              requestOptions.isScaleOnlyOrNoTransform(),
              requestOptions.getOptions(),
              requestOptions.isMemoryCacheable(),
              requestOptions.getUseUnlimitedSourceGeneratorsPool(),
              requestOptions.getUseAnimationPool(),
              requestOptions.getOnlyRetrieveFromCache(),
              this,
              callbackExecutor);

在这里的重点方法就是load方法了

public  LoadStatus load(
      GlideContext glideContext,
      Object model,
      Key signature,
      int width,
      int height,
      Class resourceClass,
      Class transcodeClass,
      Priority priority,
      DiskCacheStrategy diskCacheStrategy,
      Map, Transformation> transformations,
      boolean isTransformationRequired,
      boolean isScaleOnlyOrNoTransform,
      Options options,
      boolean isMemoryCacheable,
      boolean useUnlimitedSourceExecutorPool,
      boolean useAnimationPool,
      boolean onlyRetrieveFromCache,
      ResourceCallback cb,
      Executor callbackExecutor) {
    long startTime = VERBOSE_IS_LOGGABLE ? LogTime.getLogTime() : 0;

    EngineKey key =
        keyFactory.buildKey(
            model,
            signature,
            width,
            height,
            transformations,
            resourceClass,
            transcodeClass,
            options);

    EngineResource memoryResource;
    synchronized (this) {
      memoryResource = loadFromMemory(key, isMemoryCacheable, startTime);

      if (memoryResource == null) {

        return waitForExistingOrStartNewJob(
            glideContext,
            model,
            signature,
            width,
            height,
            resourceClass,
            transcodeClass,
            priority,
            diskCacheStrategy,
            transformations,
            isTransformationRequired,
            isScaleOnlyOrNoTransform,
            options,
            isMemoryCacheable,
            useUnlimitedSourceExecutorPool,
            useAnimationPool,
            onlyRetrieveFromCache,
            cb,
            callbackExecutor,
            key,
            startTime);
      }
    }

    // Avoid calling back while holding the engine lock, doing so makes it easier for callers to
    // deadlock.

    cb.onResourceReady(memoryResource, DataSource.MEMORY_CACHE);
    return null;
  }

可以看到Glide是缓存的key是基于url,签名,宽,高,以及配置的参数等,然后从先从缓存中取数据

Glide内存缓存实现
@Nullable
  private EngineResource loadFromMemory(
      EngineKey key, boolean isMemoryCacheable, long startTime) {
    if (!isMemoryCacheable) {
      return null;
    }

    EngineResource active = loadFromActiveResources(key);

    if (active != null) {
      Log.i("Glide","from  ActiveResourcesCache");
      if (VERBOSE_IS_LOGGABLE) {
        logWithTimeAndKey("Loaded resource from active resources", startTime, key);
      }
      return active;
    }

    EngineResource cached = loadFromCache(key);
    if (cached != null) {
      Log.i("Glide","from  loadFromCache");
      if (VERBOSE_IS_LOGGABLE) {
        logWithTimeAndKey("Loaded resource from cache", startTime, key);
      }
      return cached;
    }

    return null;
  }

这里先从ActiveResources中也就是map中取

final Map activeEngineResources = new HashMap<>();

也就是一个弱引用集合中取,取不到在从MemoryCache中取


private EngineResource loadFromCache(Key key) {
    EngineResource cached = getEngineResourceFromCache(key);
    if (cached != null) {
      cached.acquire();
      activeResources.activate(key, cached);
    }
    return cached;
  }
...
private EngineResource getEngineResourceFromCache(Key key) {
    Resource cached = cache.remove(key);

    final EngineResource result;
    if (cached == null) {
      result = null;
    } else if (cached instanceof EngineResource) {
      // Save an object allocation if we've cached an EngineResource (the typical case).
      result = (EngineResource) cached;
    } else {
      result =
          new EngineResource<>(
              cached, /*isMemoryCacheable=*/ true, /*isRecyclable=*/ true, key, /*listener=*/ this);
    }
    return result;
  }

我们可以看到一旦从memory中取到key,就会去把这个key对应的resource放到activeResources中
这样做的好处是啥?据我猜测,无非就是想缓解memorycache的压力,因为linkedHashMap的效率肯定都没有map快的
如果没有内存缓存的话,就调用waitForExistingOrStartNewJob方法

private  LoadStatus waitForExistingOrStartNewJob(
      GlideContext glideContext,
      Object model,
      Key signature,
      int width,
      int height,
      Class resourceClass,
      Class transcodeClass,
      Priority priority,
      DiskCacheStrategy diskCacheStrategy,
      Map, Transformation> transformations,
      boolean isTransformationRequired,
      boolean isScaleOnlyOrNoTransform,
      Options options,
      boolean isMemoryCacheable,
      boolean useUnlimitedSourceExecutorPool,
      boolean useAnimationPool,
      boolean onlyRetrieveFromCache,
      ResourceCallback cb,
      Executor callbackExecutor,
      EngineKey key,
      long startTime) {

    EngineJob current = jobs.get(key, onlyRetrieveFromCache);
    if (current != null) {
      current.addCallback(cb, callbackExecutor);
      if (VERBOSE_IS_LOGGABLE) {
        logWithTimeAndKey("Added to existing load", startTime, key);
      }
      return new LoadStatus(cb, current);
    }

    EngineJob engineJob =
        engineJobFactory.build(
            key,
            isMemoryCacheable,
            useUnlimitedSourceExecutorPool,
            useAnimationPool,
            onlyRetrieveFromCache);

    DecodeJob decodeJob =
        decodeJobFactory.build(
            glideContext,
            model,
            key,
            signature,
            width,
            height,
            resourceClass,
            transcodeClass,
            priority,
            diskCacheStrategy,
            transformations,
            isTransformationRequired,
            isScaleOnlyOrNoTransform,
            onlyRetrieveFromCache,
            options,
            engineJob);

    jobs.put(key, engineJob);

    engineJob.addCallback(cb, callbackExecutor);
    engineJob.start(decodeJob);

    if (VERBOSE_IS_LOGGABLE) {
      logWithTimeAndKey("Started new load", startTime, key);
    }
    return new LoadStatus(cb, engineJob);
  }

这里enginJob是为了过滤decodeJob的重复请求的,并开启decodeJob中的线程池可以看到在start方法中

  public synchronized void start(DecodeJob decodeJob) {
    this.decodeJob = decodeJob;
    GlideExecutor executor =
        decodeJob.willDecodeFromCache() ? diskCacheExecutor : getActiveSourceExecutor();
    executor.execute(decodeJob);
  }

这里的判断很明显,是判断此次要下载的是否要从硬盘缓存取,如果是的话就开启硬盘缓存的线程池,不是的话就开启网络的线程池

 boolean willDecodeFromCache() {
    Stage firstStage = getNextStage(Stage.INITIALIZE);
    return firstStage == Stage.RESOURCE_CACHE || firstStage == Stage.DATA_CACHE;
  }
...
 private Stage getNextStage(Stage current) {
    switch (current) {
      case INITIALIZE:
        return diskCacheStrategy.decodeCachedResource()
            ? Stage.RESOURCE_CACHE
            : getNextStage(Stage.RESOURCE_CACHE);
      case RESOURCE_CACHE:
        return  diskCacheStrategy.decodeCachedData()
            ? Stage.DATA_CACHE
            : getNextStage(Stage.DATA_CACHE);
      case DATA_CACHE:
        // Skip loading from source if the user opted to only retrieve the resource from cache.
        return onlyRetrieveFromCache ? Stage.FINISHED : Stage.SOURCE;
      case SOURCE:
      case FINISHED:
        return Stage.FINISHED;
      default:
        throw new IllegalArgumentException("Unrecognized stage: " + current);
    }
  }

所以只要decodeCachedResource和decodeCachedData返回的值有一个是true的话就会开启硬盘缓存的线程池,而代码里几种硬盘缓存的策略中AUTOMATIC,RESOURCE,DATA,NONE,ALL中只有NONE两个都返回false也印证了这一点

从硬盘取缓存

@Override
  public void run() {
    // This should be much more fine grained, but since Java's thread pool implementation silently
    // swallows all otherwise fatal exceptions, this will at least make it obvious to developers
    // that something is failing.
    GlideTrace.beginSectionFormat("DecodeJob#run(model=%s)", model);
    // Methods in the try statement can invalidate currentFetcher, so set a local variable here to
    // ensure that the fetcher is cleaned up either way.
    DataFetcher localFetcher = currentFetcher;
    try {
      if (isCancelled) {
        notifyFailed();
        return;
      }
      runWrapped();
    } catch (Throwable t) {
      // Catch Throwable and not Exception to handle OOMs. Throwables are swallowed by our
      // usage of .submit() in GlideExecutor so we're not silently hiding crashes by doing this. We
      // are however ensuring that our callbacks are always notified when a load fails. Without this
      // notification, uncaught throwables never notify the corresponding callbacks, which can cause
      // loads to silently hang forever, a case that's especially bad for users using Futures on
      // background threads.
      if (Log.isLoggable(TAG, Log.DEBUG)) {
        Log.d(TAG, "DecodeJob threw unexpectedly"
            + ", isCancelled: " + isCancelled
            + ", stage: " + stage, t);
      }
      // When we're encoding we've already notified our callback and it isn't safe to do so again.
      if (stage != Stage.ENCODE) {
        throwables.add(t);
        notifyFailed();
      }
      if (!isCancelled) {
        throw t;
      }
    } finally {
      // Keeping track of the fetcher here and calling cleanup is excessively paranoid, we call
      // close in all cases anyway.
      if (localFetcher != null) {
        localFetcher.cleanup();
      }
      GlideTrace.endSection();
    }
  }

会开启线程池走到run方法中,间接会到runWrapped中,这里可能会有点绕,它的核心是找到合适的缓存机制进行加载图片
首先当diskCacheStrategy.decodeCachedResource()返回true的话首先会新建对象ResourceCacheGenerator,然后调用它的startNext方法去取缓存的图片,来看下其实现

//ResourceCacheGenerator
public boolean startNext() {
    List sourceIds = helper.getCacheKeys();
    if (sourceIds.isEmpty()) {
      return false;
    }
    List> resourceClasses = helper.getRegisteredResourceClasses();
    if (resourceClasses.isEmpty()) {
      if (File.class.equals(helper.getTranscodeClass())) {
        return false;
      }
      // TODO(b/73882030): This case gets triggered when it shouldn't. With this assertion it causes
      // all loads to fail. Without this assertion it causes loads to miss the disk cache
      // unnecessarily
      // throw new IllegalStateException(
      //    "Failed to find any load path from " + helper.getModelClass() + " to "
      //        + helper.getTranscodeClass());
    }
    while (modelLoaders == null || !hasNextModelLoader()) {
      resourceClassIndex++;
      if (resourceClassIndex >= resourceClasses.size()) {
        sourceIdIndex++;
        if (sourceIdIndex >= sourceIds.size()) {
          return false;
        }
        resourceClassIndex = 0;
      }

      Key sourceId = sourceIds.get(sourceIdIndex);
      Class resourceClass = resourceClasses.get(resourceClassIndex);
      Transformation transformation = helper.getTransformation(resourceClass);
      // PMD.AvoidInstantiatingObjectsInLoops Each iteration is comparatively expensive anyway,
      // we only run until the first one succeeds, the loop runs for only a limited
      // number of iterations on the order of 10-20 in the worst case.
      currentKey =
          new ResourceCacheKey(// NOPMD AvoidInstantiatingObjectsInLoops
              helper.getArrayPool(),
              sourceId,
              helper.getSignature(),
              helper.getWidth(),
              helper.getHeight(),
              transformation,
              resourceClass,
              helper.getOptions());
      cacheFile = helper.getDiskCache().get(currentKey);
      if (cacheFile != null) {
        sourceKey = sourceId;
        modelLoaders = helper.getModelLoaders(cacheFile);
        modelLoaderIndex = 0;
      }
    }

    loadData = null;
    boolean started = false;
    while (!started && hasNextModelLoader()) {
      ModelLoader modelLoader = modelLoaders.get(modelLoaderIndex++);
      loadData = modelLoader.buildLoadData(cacheFile,
          helper.getWidth(), helper.getHeight(), helper.getOptions());
      if (loadData != null && helper.hasLoadPath(loadData.fetcher.getDataClass())) {
        started = true;
        loadData.fetcher.loadData(helper.getPriority(), this);
      }
    }

    return started;
  }

可以看到代码很简单,由于初始化注册了资源解析器,也就是resourceClasses集合,分别是drawable,bitmap, gif
然后从把key经过宽和高,解析器类型的合成,合称为currentKey,然后再去DiskLruCacheWrapper取值

@Override
  public File get(Key key) {
    String safeKey = safeKeyGenerator.getSafeKey(key);
    if (Log.isLoggable(TAG, Log.VERBOSE)) {
      Log.v(TAG, "Get: Obtained: " + safeKey + " for for Key: " + key);
    }
    File result = null;
    try {
      // It is possible that the there will be a put in between these two gets. If so that shouldn't
      // be a problem because we will always put the same value at the same key so our input streams
      // will still represent the same data.
      final DiskLruCache.Value value = getDiskCache().get(safeKey);
      if (value != null) {
        result = value.getFile(0);
      }
    } catch (IOException e) {
      if (Log.isLoggable(TAG, Log.WARN)) {
        Log.w(TAG, "Unable to get from disk cache", e);
      }
    }
    return result;
  }

可以看到磁盘缓存把key做了md5的加密,然后从DiskLruCache取,当然经过debug分析是没取到,因为存的时候不再soure这个分之存的,后面会分析,当在soure没取到时,会去data的分之中取,代码如下

//DataCacheGenerator
@Override
  public boolean startNext() {
    while (modelLoaders == null || !hasNextModelLoader()) {
      sourceIdIndex++;
      if (sourceIdIndex >= cacheKeys.size()) {
        return false;
      }

      Key sourceId = cacheKeys.get(sourceIdIndex);
      // PMD.AvoidInstantiatingObjectsInLoops The loop iterates a limited number of times
      // and the actions it performs are much more expensive than a single allocation.
      @SuppressWarnings("PMD.AvoidInstantiatingObjectsInLoops")
      Key originalKey = new DataCacheKey(sourceId, helper.getSignature());
      cacheFile = helper.getDiskCache().get(originalKey);
      if (cacheFile != null) {
        this.sourceKey = sourceId;
        modelLoaders = helper.getModelLoaders(cacheFile);
        modelLoaderIndex = 0;
      }
    }

    loadData = null;
    boolean started = false;
    while (!started && hasNextModelLoader()) {
      ModelLoader modelLoader = modelLoaders.get(modelLoaderIndex++);
      loadData =
          modelLoader.buildLoadData(cacheFile, helper.getWidth(), helper.getHeight(),
              helper.getOptions());
      if (loadData != null && helper.hasLoadPath(loadData.fetcher.getDataClass())) {
        started = true;
        loadData.fetcher.loadData(helper.getPriority(), this);
      }
    }
    return started;
  }

可以说代码基本一样的,除了key不同,并没有像source一样区分宽高等信息,因为data保存的是原数据,自然不用区分,既然拿到了key对应的file

    @Override
    public void loadData(@NonNull Priority priority,
        @NonNull DataCallback callback) {
      ByteBuffer result;
      try {
        result = ByteBufferUtil.fromFile(file);
      } catch (IOException e) {
        if (Log.isLoggable(TAG, Log.DEBUG)) {
          Log.d(TAG, "Failed to obtain ByteBuffer for file", e);
        }
        callback.onLoadFailed(e);
        return;
      }

      callback.onDataReady(result);
    }

这里拿到了对应的file文件,通过ByteBufferUtil解析成了ByteBuffer流,间接调用onDataFetcherReady方法

@Override
  public void onDataFetcherReady(Key sourceKey, Object data, DataFetcher fetcher,
      DataSource dataSource, Key attemptedKey) {
    this.currentSourceKey = sourceKey;
    this.currentData = data;
    this.currentFetcher = fetcher;
    this.currentDataSource = dataSource;
    this.currentAttemptingKey = attemptedKey;
    if (Thread.currentThread() != currentThread) {
      runReason = RunReason.DECODE_DATA;
      callback.reschedule(this);
    } else {
      GlideTrace.beginSection("DecodeJob.decodeFromRetrievedData");
      try {
        decodeFromRetrievedData();
      } finally {
        GlideTrace.endSection();
      }
    }
  }

关于Glide拿到流后具体的优化的操作下篇具体分析,不然太长了.

你可能感兴趣的:(图片加载库分析之Glide解析(一))