承接前文,我们来看看矩阵的对角化理论。
我们前面提到对角化是在矩阵相似那里,若存在可逆矩阵 P P P ,使得 P − 1 A P = Λ P^{-1}AP=\Lambda P−1AP=Λ ,其中 Λ \Lambda Λ 为对角矩阵,则称 A A A 可以相似对角化。
设 A \pmb{A} A 为 n n n 阶矩阵,其特征值为 λ 1 , λ 2 , ⋯ , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,⋯,λn ,若存在可逆矩阵 P \pmb{P} P ,使得 P − 1 A P = [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ n ] , \pmb{P}^{-1}\pmb{AP}=\begin{bmatrix} \lambda_{1} & 0 & \cdots & 0\\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}, P−1AP= λ10⋮00λ2⋮0⋯⋯⋯00⋮λn , 称矩阵 A \pmb{A} A 可相似对角化,或 A \pmb{A} A 可对角化,或与对角矩阵相似。
第一步: 由特征方程 ∣ λ E − A ∣ = 0 |\lambda\pmb{E}-\pmb{A}|=0 ∣λE−A∣=0 ,求出矩阵 A \pmb{A} A 的特征值 λ 1 , λ 2 , ⋯ , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,⋯,λn ;
第二步: 求齐次线性方程组 ( λ i E − A ) X = 0 ( 1 ≤ i ≤ n ) (\lambda_i\pmb{E}-\pmb{A})\pmb{X}=\pmb{0}(1\leq i \leq n) (λiE−A)X=0(1≤i≤n) 的基础解系,进而求出矩阵 A \pmb{A} A 的线性无关的特征向量 α 1 , α 2 , ⋯ , α m \pmb{\alpha_1,\alpha_2,\cdots,\alpha_m} α1,α2,⋯,αm ;
回忆一下:
1.设 r ( A ) = r < n r(A)=rr(A)=r<n ,则 A X = 0 \pmb{AX=0} AX=0 所有解构成的解向量组的极大线性无关组称为方程组 A X = 0 \pmb{AX=0} AX=0 的一个基础解系。基础解系中所含有的线性无关的解向量的个数为 ( n − r ) (n-r) (n−r) 个。具体求解方法见方程组那一篇文章,传松门 。
2.上一篇文章有定理 4:不同特征值对应的特征向量线性无关。
第三步:
(一)若 m = n m=n m=n ,则矩阵 A \pmb{A} A 可相似对角化,对角化过程如下:
有定理 5:设 A \pmb{A} A 为 n n n 阶矩阵,则 A \pmb{A} A 可相似对角化(或与对角矩阵相似)的充分必要条件是 A \pmb{A} A 有 n n n 个线性无关的特征向量。
令 P = ( α 1 , α 2 , ⋯ , α n ) \pmb{P}=(\pmb{\alpha_1,\alpha_2,\cdots,\alpha_n}) P=(α1,α2,⋯,αn) ,显然 P \pmb{P} P 可逆。
列向量组线性无关,则矩阵满秩,自然是可逆的。
由 A α 1 = λ 1 α 1 , A α 2 = λ 2 α 2 , ⋯ , A α n = λ n α n \pmb{A\alpha_1}=\lambda_1\pmb{\alpha_1},\pmb{A\alpha_2}=\lambda_2\pmb{\alpha_2},\cdots,\pmb{A\alpha_n}=\lambda_n\pmb{\alpha_n} Aα1=λ1α1,Aα2=λ2α2,⋯,Aαn=λnαn 得: A P = ( A α 1 , A α 2 , ⋯ , A α n ) = ( λ 1 α 1 , λ 2 α 2 , ⋯ , λ n α n ) = P [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ n ] , \pmb{AP}=(\pmb{A\alpha_1,A\alpha_2,\cdots,A\alpha_n})=(\lambda_1\pmb{\alpha_1},\lambda_2\pmb{\alpha_2},\cdots,\lambda_n\pmb{\alpha_n})=\pmb{P}\begin{bmatrix} \lambda_{1} & 0 & \cdots & 0\\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}, AP=(Aα1,Aα2,⋯,Aαn)=(λ1α1,λ2α2,⋯,λnαn)=P λ10⋮00λ2⋮0⋯⋯⋯00⋮λn , 两边同时左乘以 P − 1 \pmb{P^{-1}} P−1 ,有 P − 1 A P = [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ n ] . \pmb{P}^{-1}\pmb{AP}=\begin{bmatrix} \lambda_{1} & 0 & \cdots & 0\\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}. P−1AP= λ10⋮00λ2⋮0⋯⋯⋯00⋮λn .
(二)若 m < n m
定理 1 —— 若 A T = A \pmb{A}^T=\pmb{A} AT=A ,则 A \pmb{A} A 一定可以相似对角化。
定理 2 —— 设 A T = A \pmb{A}^T=\pmb{A} AT=A ,则存在正交矩阵 Q \pmb{Q} Q ,使得 Q T A Q = [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ n ] . \pmb{Q}^T\pmb{AQ}=\begin{bmatrix} \lambda_{1} & 0 & \cdots & 0\\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}. QTAQ= λ10⋮00λ2⋮0⋯⋯⋯00⋮λn .
第一步: 由特征方程 ∣ λ E − A ∣ = 0 |\lambda\pmb{E}-\pmb{A}|=0 ∣λE−A∣=0 ,求出矩阵 A \pmb{A} A 的特征值 λ 1 , λ 2 , ⋯ , λ n \lambda_1,\lambda_2,\cdots,\lambda_n λ1,λ2,⋯,λn ;
第二步: 求齐次线性方程组 ( λ i E − A ) X = 0 ( 1 ≤ i ≤ n ) (\lambda_i\pmb{E}-\pmb{A})\pmb{X}=\pmb{0}(1\leq i \leq n) (λiE−A)X=0(1≤i≤n) 的基础解系,进而求出矩阵 A \pmb{A} A 的线性无关的特征向量 α 1 , α 2 , ⋯ , α n \pmb{\alpha_1,\alpha_2,\cdots,\alpha_n} α1,α2,⋯,αn ;
第三步:
(一)找可逆矩阵 P \pmb{P} P ,按照上述一般矩阵对角化过程进行:
令 P = ( α 1 , α 2 , ⋯ , α n ) \pmb{P}=(\pmb{\alpha_1,\alpha_2,\cdots,\alpha_n}) P=(α1,α2,⋯,αn) ,显然 P \pmb{P} P 可逆。
由 A α 1 = λ 1 α 1 , A α 2 = λ 2 α 2 , ⋯ , A α n = λ n α n \pmb{A\alpha_1}=\lambda_1\pmb{\alpha_1},\pmb{A\alpha_2}=\lambda_2\pmb{\alpha_2},\cdots,\pmb{A\alpha_n}=\lambda_n\pmb{\alpha_n} Aα1=λ1α1,Aα2=λ2α2,⋯,Aαn=λnαn 得: A P = ( A α 1 , A α 2 , ⋯ , A α n ) = ( λ 1 α 1 , λ 2 α 2 , ⋯ , λ n α n ) = P [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ n ] , \pmb{AP}=(\pmb{A\alpha_1,A\alpha_2,\cdots,A\alpha_n})=(\lambda_1\pmb{\alpha_1},\lambda_2\pmb{\alpha_2},\cdots,\lambda_n\pmb{\alpha_n})=\pmb{P}\begin{bmatrix} \lambda_{1} & 0 & \cdots & 0\\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}, AP=(Aα1,Aα2,⋯,Aαn)=(λ1α1,λ2α2,⋯,λnαn)=P λ10⋮00λ2⋮0⋯⋯⋯00⋮λn , 两边同时左乘以 P − 1 \pmb{P^{-1}} P−1 ,有 P − 1 A P = [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ n ] . \pmb{P}^{-1}\pmb{AP}=\begin{bmatrix} \lambda_{1} & 0 & \cdots & 0\\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}. P−1AP= λ10⋮00λ2⋮0⋯⋯⋯00⋮λn .
(二)找正交矩阵 Q \pmb{Q} Q ,使得 Q T A Q \pmb{Q}^T\pmb{AQ} QTAQ 为对角矩阵的过程如下:
(1)将 α 1 , α 2 , ⋯ , α n \pmb{\alpha_1,\alpha_2,\cdots,\alpha_n} α1,α2,⋯,αn 进行施密特正交化为 β 1 , β 2 , ⋯ , β n \pmb{\beta_1,\beta_2,\cdots,\beta_n} β1,β2,⋯,βn ;
(2)将 β 1 , β 2 , ⋯ , β n \pmb{\beta_1,\beta_2,\cdots,\beta_n} β1,β2,⋯,βn 规范化为 γ 1 , γ 2 , ⋯ , γ n \pmb{\gamma_1,\gamma_2,\cdots,\gamma_n} γ1,γ2,⋯,γn 。令 Q = ( γ 1 , γ 2 , ⋯ , γ n ) \pmb{Q=(\gamma_1,\gamma_2,\cdots,\gamma_n}) Q=(γ1,γ2,⋯,γn) ,显然 Q \pmb{Q} Q 为正交矩阵。实对称矩阵特征向量进行施密特正交化后,仍然为特征向量,因此有 A γ 1 = λ 1 γ 1 , A γ 2 = λ 2 γ 2 , ⋯ , A γ n = λ n γ n \pmb{A\gamma_1}=\lambda_1\pmb{\gamma_1},\pmb{A\gamma_2}=\lambda_2\pmb{\gamma_2},\cdots,\pmb{A\gamma_n}=\lambda_n\pmb{\gamma_n} Aγ1=λ1γ1,Aγ2=λ2γ2,⋯,Aγn=λnγn 得: A Q = Q [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ n ] , \pmb{AQ}=\pmb{Q}\begin{bmatrix} \lambda_{1} & 0 & \cdots & 0\\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}, AQ=Q λ10⋮00λ2⋮0⋯⋯⋯00⋮λn , 两边同时左乘以 Q T \pmb{Q^{T}} QT ,有 Q T A Q = [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ λ n ] . \pmb{Q}^{T}\pmb{AQ}=\begin{bmatrix} \lambda_{1} & 0 & \cdots & 0\\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_{n} \end{bmatrix}. QTAQ= λ10⋮00λ2⋮0⋯⋯⋯00⋮λn .
一般矩阵,不一定能相似对角化,要求有 n n n 个线性无关的特征向量才可以相似对角化。
实对称矩阵的不同特征值对应的特征向量本来就是正交的,之所以还要正交规范化,是为了求一个正交矩阵。
下面是一些笔记注解:
这一块内容刚接触可太费头脑了,而且一定是需要大量练习题目的。
那到此,关于特征值和特征向量的理论部分告一段落了,最后只剩下一个二次型了。