JVM内存模型及JAVA程序运行原理

目录

  • 平台
  • JVM简介
  • 内存结构
    • 方法区
      • 一个对象的内存分配流程
      • 局部变量表
      • 操作栈
      • 动态连接
      • 方法返回地址
    • 程序计数器
    • Metaspace 元空间
    • 本地方法栈
    • 直接内存
    • Code Cache
  • JAVA程序在JVM内是如何执行的

平台

Java是一种可以跨平台的编程语言。Java可以跨平台得益于 JVM(java虚拟机)。我们把CPU处理器与操作系统的整体叫平台。
CPU相当于计算机的大脑,指令集是CPU中用来计算和控制计算机系统的一套指令的集合。
指令集分为精简指令集(RISC)和复杂指令集(CISC)。每个CPU都有自己的特定指令集。
通常,我们编写的Java源代码在编译后会生成一个Class文件,称为字节码文件。JVM是跨平台的桥梁和中间件,是实现跨平台的关键。首先将Java代码编译成字节码文件,然后通过JVM将其翻译成机器语言,从而达到运行Java程序的目的。
编译的结果不是生成机器代码,而是生成字节码。字节码不能直接运行,必须由JVM转换成机器码。编译生成的字节码在不同的平台上是相同的,但是JVM翻译的机器码是不同的。

JVM简介

JVM------Java Virtual Machine.JVM是Java平台的基础,与实际机器一样,他有自己的指令集(类似CPU通过指令操作程序运行),并在运行时操作不同的内存区域(JVM内存体系)。Java虚拟机位于操作系统之上(如下图所示),将通过JAVAC命令编译后的字节码加载到其内存区域,通过解释器将字节码翻译成CPU能识别的机器码行。每一条Java指令,Java虚拟机规范中都有详细定义,如怎么取操作数,怎么处理操作数,处理结果放在哪里。
JVM是运行在操作系统之上的,它与硬件没有直接交互。
JVM内存模型及JAVA程序运行原理_第1张图片

内存结构

JAVA源代码文件通过编译后变成虚拟机可以识别的字节码,JAVA程序在执行时,会通过类加载器把字节码加载到虚拟机的内存中(虚拟机的内存是一个逻辑概念,相当于是对主内存的一个抽象,实际上真实的数据还是存放在主存中)。

JVM内存模型及JAVA程序运行原理_第2张图片
Java 虚拟机在执行 Java 程序的过程中会把它管理的内存划分为若干个不同的数据区域。每个区域都有各自的作用。
分析 JVM 内存结构,主要就是分析JVM 运行时数据存储区域。JVM 的运行时数据区主要包括:堆、栈、方法区、程序计数器等。而 JVM 的优化问题主要在线程共享的数据区中:堆、方法区。

JVM内存模型及JAVA程序运行原理_第3张图片

JVM内存模型及JAVA程序运行原理_第4张图片
按照线程是否共享来分类:
JVM内存模型及JAVA程序运行原理_第5张图片

方法区

又称非堆(non-heap),方法区用于存储已被虚拟机加载的类信息,常量、静态变量,即时编译后的代码等数据。方法区中最著名的就是CLASS对象,CLASS对象中存放了类的元数据信息,包括:类的名称、类的加载器、类的方法、类的注解等。

当我们new一个新对象或者引用静态成员变量时,Java虚拟机(JVM)中的类加载器子系统会将对应Class对象加载到JVM中,然后JVM再根据这个类型信息相关的Class对象创建我们需要实例对象或者提供静态变量的引用值。注意,我们定义的一个类,无论创建多少个实例对象,在JVM中都只有一个Class对象与其对应,即:在内存中每个类有且只有一个相对应的Class对象
注:这里的Class对象并不是根据我们的Class类创建出来的对象。
JVM内存模型及JAVA程序运行原理_第6张图片
实际上所有的类都是在对其第一次使用时动态加载到JVM中的,当程序创建第一个对类的静态成员引用时,就会加载这个被使用的类(实际上加载的就是这个类的字节码文件)。使用new创建类的新实例对象也会被当作对类的静态成员的引用(构造函数也相当于类的静态方法,因为它们都有属于类的,而不是属于类对象的特点。)

Java程序在它们开始运行之前并非被完全加载到内存的,其各个部分是按需加载,所以在使用该类时,类加载器首先会检查这个类的Class对象是否已被加载(类的实例对象创建时依据Class对象中类型信息完成的),如果还没有加载,默认的类加载器就会先根据类名查找.class文件(编译后Class对象被保存在同名的.class文件中),在这个类的字节码文件被加载时,它们必须接受相关验证,以确保其没有被破坏并且不包含不良Java代码(这是java的安全机制检测),完全没有问题后就会被动态加载到内存中,此时相当于Class对象也就被载入内存了(毕竟.class字节码文件保存的就是Class对象),同时也就可以根据这个类的Class对象来创建这个类的所有实例对象。

所有创建出来的实例对象还有数组都是存放在堆内存中,堆是Java虚拟机所管理的内存中最大的一块存储区域,堆内存被所有线程共享。
垃圾收集器就是根据GC算法,收集堆上对象所占用的内存空间,堆上又分为了新生代和老年代,针对不同的分代又会有对象的垃圾回收器和相应的回收算法。

堆是 OOM故障最主要的发生区域。它是内存区域中最大的一块区域,被所有线程共享,存储着几乎所有的实例对象、数组。所有的对象实例以及数组都要在堆上分配,但是随着JIT编译器的发展与逃逸分析技术逐渐成熟,栈上分配、标量替换优化技术将会导致一些微妙的变化发生,所有的对象都分配在堆上也渐渐变得不是那么“绝对”了。

Java堆是垃圾收集器管理的主要区域,因此很多时候也被称做“GC堆”。从内存回收的角度来看,由于现在收集器基本都采用分代收集算法,所以Java堆中还可以细分为:新生代和老年代。再细致一点的有Eden空间、From Survivor空间、To Survivor空间等。从内存分配的角度来看,线程共享的Java堆中可能划分出多个线程私有的分配缓冲区(Thread Local Allocation Buffer,TLAB)。不过无论如何划分,都与存放内容无关,无论哪个区域,存储的都仍然是对象实例,进一步划分的目的是为了更好地回收内存,或者更快地分配内存。

根据Java虚拟机规范的规定,Java堆可以处于物理上不连续的内存空间中,只要逻辑上是连续的即可,就像我们的磁盘空间一样。在实现时,既可以实现成固定大小的,也可以在运行时动态地调整。

通过设置如下参数,可以设定堆区的初始值和最大值,比如 -Xms256M -Xmx 1024M,其中 -X这个字母代表它是JVM运行时参数,ms是memory start的简称,中文意思就是内存初始值,mx 是 memory max的简称,意思就是最大内存。

在通常情况下,服务器在运行过程中,堆空间不断地扩容与回缩,会形成不必要的系统压力 所以在线上生产环境中 JVM的Xms和 Xmx会设置成同样大小,避免在GC 后调整堆大小时带来的额外压力。

JVM内存模型及JAVA程序运行原理_第7张图片

执行如下命令,就可以查看当前JDK版本所有默认的JVM参数。

java -XX:+PrintFlagsFinal -version
>java -XX:+PrintFlagsFinal -version
[Global flags]
  ...
    uintx InitialSurvivorRatio = 8
    uintx NewRatio = 2
    ...
java version "1.8.0_131"
Java(TM) SE Runtime Environment (build 1.8.0_131-b11)
Java HotSpot(TM) 64-Bit Server VM (build 25.131-b11, mixed mode)
  • -XX:InitialSurvivorRatio:新生代Eden/Survivor空间的初始比例
  • -XX:NewRatio:Old区/Young区的内存比例

因为新生代是由Eden + S0 + S1组成的,所以按照上述默认比例,如果eden区内存大小是40M,那么两个survivor区就是5M,整个young区就是50M,然后可以算出Old区内存大小是100M,堆区总大小就是150M。

-XX:+HeapDumpOnOutOfMemoryError可以让JVM在遇到OOM异常时,输出堆内信息,特别是对相隔数月才出现的OOM异常尤为重要。

一个对象的内存分配流程

JVM内存模型及JAVA程序运行原理_第8张图片
绝大部分对象在Eden区生成,当Eden区装填满的时候,会触发Young Garbage Collection,即YGC。垃圾回收的时候,在Eden区实现清除策略,没有被引用的对象则直接回收。依然存活的对象会被移送到Survivor区。Survivor区分为so和s1两块内存空间。每次YGC的时候,它们将存活的对象复制到未使用的那块空间,然后将当前正在使用的空间完全清除,交换两块空间的使用状态。如果YGC要移送的对象大于Survivor区容量的上限,则直接移交给老年代。

一个对象也不可能永远呆在新生代,就像人到了18岁就会成年一样,在JVM中
-XX:MaxTenuringThreshold参数就是来配置一个对象从新生代晋升到老年代的阈值。默认值是15, 可以在Survivor区交换14次之后,晋升至老年代。

JVM 中的栈包括 Java 虚拟机栈和本地方法栈,两者的区别就是,Java 虚拟机栈为 JVM 执行 Java 方法服务,本地方法栈则为 JVM 使用到的 Native 方法服务。

对于每一个线程,JVM 都会在线程被创建的时候,创建一个单独的栈。也就是说虚拟机栈的生命周期和线程是一致,并且是线程私有的。除了Native方法以外,Java方法都是通过Java 虚拟机栈来实现调用和执行过程的(需要程序技术器、堆、元空间内数据的配合)。所以Java虚拟机栈是虚拟机执行引擎的核心之一。而Java虚拟机栈中出栈入栈的元素就称为「栈帧」。

栈属于线程私有的数据区域,与线程同时创建,总数与线程关联,代表Java方法执行的内存模型。每个方法执行时都会创建一个栈帧来存储方法的的局部变量表、操作数栈、动态链接方法、方法返回值、返回地址等信息。每一个方法从调用至执行完成的过程,都对应着一个栈帧在虚拟机栈里从入栈到出栈的过程。栈帧中的局部变量表可以存放基本类型,也可以存放指向对象的引用,当在某个方法中new Object()时,会在当前方法栈帧中的局部变量表存放一个指向堆内存实例对象的引用。
JVM内存模型及JAVA程序运行原理_第9张图片

栈对应线程,栈帧对应方法

在活动线程中, 只有位于栈顶的帧才是有效的, 称为当前栈帧。正在执行的方法称为当前方法。在执行引擎运行时, 所有指令都只能针对当前栈帧进行操作。而StackOverflowError 表示请求的栈溢出, 导致内存耗尽, 通常出现在递归方法中。

虚拟机栈通过pop和push的方式,对每个方法对应的活动栈帧进行运算处理,方法正常执行结束,肯定会跳转到另一个栈帧上。在执行的过程中,如果出现了异常,会进行异常回溯,返回地址通过异常处理表确定。

JVM内存模型及JAVA程序运行原理_第10张图片

局部变量表

局部变量表就是存放方法参数和方法内部定义的局部变量的区域。

局部变量表所需的内存空间在编译期间完成分配,当进入一个方法时,这个方法需要在帧中分配多大的局部变量空间是完全确定的,在方法运行期间不会改变局部变量表的大小。

public int test(int a, int b) {
    Object obj = new Object();
    return a + b;
}

如果局部变量是Java的8种基本基本数据类型,则存在局部变量表中,如果是引用类型。如new出来的对象,局部变量表中存的是引用,而实例在堆中。
JVM内存模型及JAVA程序运行原理_第11张图片

操作栈

操作数栈(Operand Stack)看名字可以知道是一个栈结构。Java虚拟机的解释执行引擎称为“基于栈的执行引擎”,其中所指的“栈”就是操作数栈。当JVM为方法创建栈帧的时候,在栈帧中为方法创建一个操作数栈,保证方法内指令可以完成工作。

public class OperandStackTest {

    public int sum(int a, int b) {
        return a + b;
    }
}

编译生成.class文件之后,再反汇编查看汇编指令

> javac OperandStackTest.java
> javap -v OperandStackTest.class > 1.txt
public int sum(int, int);
    descriptor: (II)I
    flags: ACC_PUBLIC
    Code:
      stack=2, locals=3, args_size=3 // 最大栈深度为2 局部变量个数为3
         0: iload_1 // 局部变量1 压栈
         1: iload_2 // 局部变量2 压栈
         2: iadd // 栈顶两个元素相加,计算结果压栈
         3: ireturn
      LineNumberTable:
        line 10: 0

动态连接

每个栈帧中包含一个在常量池中对当前方法的引用, 目的是支持方法调用过程的动态连接。

方法返回地址

方法执行时有两种退出情况:

  • 正常退出,即正常执行到任何方法的返回字节码指令,如 RETURN、IRETURN、ARETURN等
  • 异常退出

无论何种退出情况,都将返回至方法当前被调用的位置。方法退出的过程相当于弹出当前栈帧,退出可能有三种方式:

  • 返回值压入上层调用栈帧
  • 异常信息抛给能够处理的栈帧
  • PC 计数器指向方法调用后的下一条指令

程序计数器

是一块较小的内存空间,用来存储虚拟机下一条执行的字节码指令地址,和CPU中的程序计数器是一样的概念。是线程私有的。它可以看作是当前线程所执行的字节码的行号指示器。

因为代码是在线程中运行的,线程有可能被挂起。即CPU一会执行线程A,线程A还没有执行完被挂起了,接着执行线程B,最后又来执行线程A了,CPU得知道执行线程A的哪一部分指令,线程计数器会告诉CPU。

由于Java虚拟机的多线程是通过线程轮流切换并分配处理器执行时间的方式来实现的,CPU 只有把数据装载到寄存器才能够运行。寄存器存储指令相关的现场信息,由于CPU 时间片轮限制,众多线程在并发执行过程中,任何一个确定的时刻,一个处理器或者多核处理器中的一个内核,只会执行某个线程中的一条指令。

因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立的程序计数器,各条线程之间计数器互不影响,独立存储。每个线程在创建后,都会产生自己的程序计数器和栈帧,程序计数器用来存放执行指令的偏移量和行号指示器等,线程执行或恢复都要依赖程序计数器。此区域也不会发生内存溢出异常。

Metaspace 元空间

在 HotSpot JVM 中,永久代( ≈ 方法区)中用于存放类和方法的元数据以及常量池,比如Class和Method。每当一个类初次被加载的时候,它的元数据都会放到永久代中。

永久代是有大小限制的,因此如果加载的类太多,很有可能导致永久代内存溢出,即万恶的 java.lang.OutOfMemoryError: PermGen

Java 8 中 PermGen 被移出 HotSpot JVM 了:

  • 由于 PermGen 内存经常会溢出,引发恼人的 java.lang.OutOfMemoryError: PermGen,因此 JVM 的开发者希望这一块内存可以更灵活地被管理,不要再经常出现这样的 OOM
  • 移除 PermGen 可以促进 HotSpot JVM 与 JRockit VM 的融合,因为 JRockit 没有永久代。

根据上面的各种原因,PermGen 最终被移除,方法区移至 Metaspace,字符串常量池移至堆区。

准确来说,Perm 区中的字符串常量池被移到了堆内存中是在Java7 之后,Java 8 时,PermGen 被元空间代替,其他内容比如类元信息、字段、静态属性、方法、常量等都移动到元空间区。比如java/lang/Object类元信息、静态属性System.out、整形常量 100000等。

元空间与永久代之间最大的区别在于:元空间并不在虚拟机中,而是使用本地内存。因此,默认情况下,元空间的大小仅受本地内存限制。

对应的JVM调参:
JVM内存模型及JAVA程序运行原理_第12张图片

本地方法栈

本地方法栈(Native Method Stack)与虚拟机栈所发挥的作用是非常相似的,它们之间的区别不过是虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则为虚拟机使用到的Native方法服务。

在虚拟机规范中对本地方法栈中方法使用的语言、使用方式与数据结构并没有强制规定,因此具体的虚拟机可以自由实现它。甚至有的虚拟机(譬如Sun HotSpot虚拟机)直接就把本地方法栈和虚拟机栈合二为一。与虚拟机栈一样,本地方法栈区域也会抛出StackOverflowError和OutOfMemoryError异常。

直接内存

直接内存(Direct Memory)并不是虚拟机运行时数据区的一部分,也不是Java虚拟机规范中定义的内存区域。但是这部分内存也被频繁地使用,而且也可能导致OutOfMemoryError异常出现。

在JDK 1.4中新加入了NIO(New Input/Output)类,引入了一种基于通道(Channel)与缓冲区(Buffer)的I/O方式,它可以使用Native函数库直接分配堆外内存,然后通过一个存储在Java堆中的DirectByteBuffer对象作为这块内存的引用进行操作。这样能在一些场景中显著提高性能,因为避免了在Java堆和Native堆中来回复制数据。

显然,本机直接内存的分配不会受到Java堆大小的限制,但是,既然是内存,肯定还是会受到本机总内存(包括RAM以及SWAP区或者分页文件)大小以及处理器寻址空间的限制。如果内存区域总和大于物理内存的限制,也会出现OOM。

Code Cache

JVM代码缓存是JVM将其字节码存储为本机代码的区域 。我们将可执行本机代码的每个块称为 nmethod 。该 nmethod可能是一个完整的或内联Java方法。

实时(JIT)编译器是代码缓存区域的最大消费者。这就是为什么一些开发人员将此内存称为JIT代码缓存的原因。

这部分代码所占用的内存空间成为CodeCache区域。一般情况下我们是不会关心这部分区域的且大部分开发人员对这块区域也不熟悉。如果这块区域OOM了,在日志里面就会看到 java.lang.OutOfMemoryError code cache。

诊断选项:
JVM内存模型及JAVA程序运行原理_第13张图片

JAVA程序在JVM内是如何执行的

  • JAVA源代码编译成字节码;
  • 字节码校验并把JAVA程序通过类加载器加载到JVM内存中;
  • 在加载到内存后针对每个类创建Class对象并放到方法区;
  • 字节码指令和数据初始化到内存中;
  • 找到main方法,并创建栈帧;
  • 初始化程序计数器内部的值为main方法的内存地址;
  • 程序计数器不断递增,逐条执行JAVA字节码指令,把指令执行过程的数据存放到操作数栈中(入栈),执行完成后从操作数栈取出后放到局部变量表中,遇到创建对象,则在堆内存中分配一段连续的空间存储对象,栈内存中的局部变量表存放指向堆内存的引用;遇到方法调用则再创建一个栈帧,压到当前栈帧的上面。

你可能感兴趣的:(jvm,java,开发语言)