Linux多线程【线程控制】

✨个人主页: 北 海
所属专栏: Linux学习之旅
操作环境: CentOS 7.6 阿里云远程服务器

成就一亿技术人


文章目录

  • 前言
  • ️正文
    • 1、线程知识补充
      • 1.2、线程私有资源
      • 1.3、线程共享资源
      • 1.4、原生线程库
    • 2、线程控制接口
      • 2.1、线程创建
        • 2.1.1、一批线程
      • 2.2、线程等待
      • 2.3、线程终止
      • 2.4、线程实战
      • 2.5、其他接口
        • 2.5.1、关闭线程
        • 2.5.2、获取线程ID
        • 2.5.3、线程分离
    • 3、深入理解线程
      • 3.1、理解线程库及线程 ID
      • 3.2、理解线程独立栈
      • 3.3、理解线程局部存储
  • 总结


前言

线程是进程内部的一个执行流,作为 CPU 运行的基本单位,对于线程的合理控制与任务的执行效率息息相关,因此掌握线程基本操作(线程控制)是很有必要的

Linux多线程【线程控制】_第1张图片


️正文

1、线程知识补充

在正式介绍线程控制相关接口前,需要先补充一波线程相关知识

1.2、线程私有资源

在 Linux多线程【初识线程】 中我们得出了一个结论:Linux 中没有真线程,只有复用 PCB 设计思想的 TCB 结构

Linux多线程【线程控制】_第2张图片

因此 Linux 中的线程本质上就是 轻量级进程(LWP),一个进程内的多个线程看到的是同一个进程地址空间,所以所有的线程可能会共享进程的大部分资源

但是如果多个执行流(多个线程)都使用同一份资源,如何确保自己的相对独立性呢?

  • 相对独立性:线程各司其职,不至于乱成一锅粥

Linux多线程【线程控制】_第3张图片

显然,多线程虽然共同 “生活” 在一个进程中,但也需要有自己的 “隐私”,而这正是 线程私有资源

线程私有资源:

  1. 线程 ID:内核观点中的 LWP
  2. 一组寄存器: 线程切换时,当前线程的上下文数据需要被保存
  3. 线程独立栈: 线程在执行函数时,需要创建临时变量
  4. 错误码 errno: 线程因错误终止时,需要告知父进程
  5. 信号屏蔽字: 不同线程对于信号的屏蔽需求不同
  6. 调度优先级: 线程也是要被调度的,需要根据优先级进行合理调度

其中,线程 最重要 的资源是 一组寄存器(体现切换特性)和独立栈(体现临时运行特性)

这两个资源共同构成了最基本的线程

1.3、线程共享资源

除了上述提到的 线程私有资源 外,多线程还共享着进程中的部分资源

共享的定义:不需要太多的额外成本,就可以实现随时访问资源

基于 多线程看到的是同一块进程地址空间,理论上 凡是在进程地址空间中出现的资源,多线程都是可以看到的

但实际上为了确保线程调度、运行时的独立性,只能共享部分资源

这也就是线程中的栈区称作 “独立栈” 的原因:某块栈空间属于某个线程,其他线程是可以访问的,为了确保独立性,并不会这样做

进程地址空间 中,诸如 共享区、全局数据区等 这类天生自带共享属性的区域支持 多线程共享

Linux多线程【线程控制】_第4张图片

Linux 中,多线程共享资源如下

线程共享资源:

  1. 共享区、全局数据区、字符常量区、代码区: 常规资源共享区
  2. 文件描述符表: 进行 IO 操作时,无需再次打开文件
  3. 每种信号的处理方式: 多线程共同构成一个整体,信号的处理动作必须统一
  4. 当前工作目录: 即使是多线程,也是位于同一工作目录下
  5. 用户 ID 和 组 ID: 进程属于某个组中的某个用户,多线程也是如此

其中,线程 较重要 的共享资源是:文件描述符表

涉及 IO 操作时,多线程 多路转接 非常实用

进程和线程关系图示

Linux多线程【线程控制】_第5张图片

多个单线程进程单进程多线程 比较常用

1.4、原生线程库

在之前编译多线程相关代码时,我们必须带上一个选项:-lpthread,否则就无法使用多线程相关接口

Linux多线程【线程控制】_第6张图片
带上这个选项的目的很简单:使用 pthread 原生线程库

接下来对 原生线程库 进行一个系统性的理解

首先,在 Linux 中是没有真正意义上的线程的,有的只是通过进程模拟实现的线程(LWP

站在操作系统角度:并不会提供对线程控制的相关接口,最多提供轻量级进程操作的相关接口

但是对于用户来说,只认识线程,并不清楚轻量级进程

所以为了使用户能愉快的对线程进行操作,就需要对系统提供的轻量级进程操作相关接口进行封装:对下封装轻量级进程操作相关接口,对上给用户提供线程控制的相关接口

这里很好的体现了计算机界的哲学:通过添加一层软件层解决问题

Linux多线程【线程控制】_第7张图片

Linux 中,封装轻量级进程操作相关接口的库称为 pthread 库,即 原生线程库,这个库文件是所有 Linux 系统都必须预载的,用户使用多线程控制相关接口时,只需要指明使用 -lpthread 库,即可正常使用多线程控制相关接口


2、线程控制接口

有了前面知识的补充之后,接下来正式进入线程控制接口的学习

2.1、线程创建

要想控制线程,得先创建线程,对于 原生线程库 来说,创建线程使用的是 pthread_create 这个接口

#include 

int pthread_create(pthread_t *thread, const pthread_attr_t *attr,
                   void *(*start_routine) (void *), void *arg);

先来认识一下函数中涉及的参数

参数1 pthread_t*线程 ID,用于标识线程,其实这玩意本质上就是一个 unsigned long int 类型

图示
注:pthread_t* 表明这是一个输出型参数,旨在创建线程后,获取新线程 ID

参数2 const pthread_attr_t*用于设置线程的属性,比如优先级、状态、私有栈大小,这个参数一般不考虑,直接传递 nullptr 使用默认设置即可

参数3 void *(*start_routine) (void *)这是一个很重要的参数,它是一个 返回值为 void* 参数也为 void* 的函数指针,线程启动时,会自动回调此函数(类似于 signal 函数中的参数2)

参数4 void*显然,这个类型与回调函数中的参数类型匹配上了,而这正是线程运行时,传递给回调函数的参数

返回值 int创建成功返回 0,失败返回 error number

明白创建线程函数的各个参数后,就可以尝试创建一个线程了

#include 
#include 
#include 

using namespace std;

void* threadRun(void *arg)
{
    while(true)
    {
        cout << "我是次线程,我正在运行..." << endl;
        sleep(1);
    }

    return nullptr;
}

int main()
{
    pthread_t t;
    pthread_create(&t, nullptr, threadRun, nullptr);

    while(true)
    {
        cout << "我是主线程 " << " 我创建了一个次线程 " << t << endl;
        sleep(1);
    }

    return 0;
}

非常简单的代码,此时如果直接编译会引发报错

Linux多线程【线程控制】_第8张图片

错误:未定义 pthread_create 这个函数

原因:没有指明使用 原生线程库,这是一个非常常见的问题

解决方法:编译时带上 -lpthread,指明使用 原生线程库

此时再编译就没有问题了

Linux多线程【线程控制】_第9张图片

可以通过 ps -aL 查看正在运行中的线程信息
Linux多线程【线程控制】_第10张图片

接下来解决一批衍生问题

1.如何验证 原生线程库 存在?
现在我们已经得到了一个链接 原生线程库 的可执行程序,可以通过 ldd 可执行程序 查看库的链接情况

ldd mythread

Linux多线程【线程控制】_第11张图片

可以看到,原生线程库路径: /lib64/libpthread.so.0

Linux多线程【线程控制】_第12张图片

足以证明原生线程库确确实实的存在于我们的系统中

2.为什么打印的次线程 ID 如此长?并且与 ps -aL 查出来的 LWP 不一致?

很长是因为它本质上是一个无符号长整型,至于为什么显示不一致的问题,需要到后面才能解答

3.程序运行时,主次线程的运行顺序?
线程的调度机制源于进程,而多进程运行时,谁先运行取决于调度器,因此主次线程运行的先后顺序不定,具体取决于调度器的调度

2.1.1、一批线程

接下来演示创建一批线程

#include 
#include 
#include 

using namespace std;

#define NUM 5

void* threadRun(void *name)
{
    while(true)
    {
        cout << "我是次线程 " << (char*)name << endl;
        sleep(1);
    }

    return nullptr;
}

int main()
{
    pthread_t pt[NUM];

    for(int i = 0; i < NUM; i++)
    {
        // 注册新线程的信息
        char name[64];
        snprintf(name, sizeof(name), "thread-%d", i + 1);
        pthread_create(pt + i, nullptr, threadRun, name);
    }

    while(true)
    {
        cout << "我是主线程,我正在运行" << endl;
        sleep(1);
    }

    return 0;
}

细节:传递 pthread_create 的参数1时,可以通过 起始地址+偏移量 的方式进行传递,传递的就是 pthread_t*

预期结果:打印 thread-1thread-2thread-3

实际结果:确实有五个次线程在运行,但打印的结果全是 thread-5

Linux多线程【线程控制】_第13张图片

原因:char name[64] 属于主线程中栈区之上的变量,多个线程实际指向的是同一块空间,最后一次覆盖后,所有线程都打印 thread-5

Linux多线程【线程控制】_第14张图片

这是由于多线程共享同一块区域引发的问题,解决方法就是在堆区动态匹配空间,使不同的线程读取不同的空间,这样就能确保各自信息的独立性

#include 
#include 
#include 

using namespace std;

#define NUM 5

void* threadRun(void *name)
{
    while(true)
    {
        cout << "我是次线程 " << (char*)name << endl;
        sleep(1);
    }
    delete[] (char*)name;

    return nullptr;
}

int main()
{
    pthread_t pt[NUM];

    for(int i = 0; i < NUM; i++)
    {
        // 注册新线程的信息
        char *name = new char[64];
        snprintf(name, 64, "thread-%d", i + 1);
        pthread_create(pt + i, nullptr, threadRun, name);
    }

    while(true)
    {
        cout << "我是主线程,我正在运行" << endl;
        sleep(1);
    }

    return 0;
}

现在程序能符合预期般运行了

Linux多线程【线程控制】_第15张图片
显然,线程每次的运行顺序取决于调度器

在上面的程序中,主线程也是在死循环式运行,假若主线程等待 3 秒后,再 return, 会发生什么呢?

#include 
#include 
#include 

using namespace std;

#define NUM 5

void* threadRun(void *name)
{
    while(true)
    {
        cout << "我是次线程 " << (char*)name << endl;
        sleep(1);
    }
    delete[] (char*)name;

    return nullptr;
}

int main()
{
    pthread_t pt[NUM];

    for(int i = 0; i < NUM; i++)
    {
        // 注册新线程的信息
        char *name = new char[64];
        snprintf(name, 64, "thread-%d", i + 1);
        pthread_create(pt + i, nullptr, threadRun, name);
    }

    // 等待 3 秒后 return
    sleep(3);
    return 0;
}

结果:程序运行 3 秒后,主线程退出,同时其他次线程也被强制结束了

Linux多线程【线程控制】_第16张图片

这是因为 主线程结束了,整个进程的资源都得被释放,次线程自然也就无法继续运行了

换句话说,次线程由主线程创建,主线程就得对他们负责,必须等待他们运行结束,类似于父子进程间的等待机制;如果不等待,就会引发僵尸进程问题,不过线程这里没有僵尸线程的概念,直接影响就是次线程也全部退出了

2.2、线程等待

主线程需要等待次线程,在 原生线程库 中刚好存在这样一个接口 pthread_join,用于等待次线程运行结束

#include 

int pthread_join(pthread_t thread, void **retval);

照例先来看看参数部分

参数1 pthread_t待等待的线程 ID,本质上就是一个无符号长整型类型;这里传递是数值,并非地址

参数2 void**这是一个输出型参数,用于获取次线程的退出结果,如果不关心,可以传递 nullptr

返回值:成功返回 0,失败返回 error number

函数原型很简单,使用也很简单,我们可以直接在主线程中调用并等待所有次线程运行结束

#include 
#include 
#include 

using namespace std;

#define NUM 5

void* threadRun(void *name)
{
    while(true)
    {
        cout << "我是次线程 " << (char*)name << endl;
        sleep(1);
    }
    delete[] (char*)name;

    return nullptr;
}

int main()
{
    pthread_t pt[NUM];

    for(int i = 0; i < NUM; i++)
    {
        // 注册新线程的信息
        char *name = new char[64];
        snprintf(name, 64, "thread-%d", i + 1);
        pthread_create(pt + i, nullptr, threadRun, name);
    }

    // 等待次线程运行结束
    for(int i = 0; i < NUM; i++)
    {
        int ret = pthread_join(pt[i], nullptr);
        if(ret != 0)
            cerr << "等待线程 " << pt[i] << " 失败!" << endl;
    }

    cout << "所有线程都退出了" << endl;

    return 0;
}

主线程需要等待次线程运行结束,整个程序也就正常运行了

Linux多线程【线程控制】_第17张图片

2.3、线程终止

线程可以被创建并运行,也可以被终止,线程终止方式有很多种

比如 等待线程回调函数执行结束,次线程运行五秒后就结束了,然后被主线程中的 pthread_join 等待成功,次线程使命完成

void* threadRun(void *name)
{
    // 只让次线程运行五秒
    int n = 5;
    while(n--)
    {
        cout << "我是次线程 " << (char*)name << endl;
        sleep(1);
    }
    delete[] (char*)name;

    return nullptr;
}

还有一种方法是 在次线程回调方法中调用 exit() 函数,但这会引发一个大问题:只要其中一个线程退出了,其他线程乃至整个进程都得跟着退出,显然这不是很合理,不推荐这样玩多线程

void* threadRun(void *name)
{
    while(true)
    {
        cout << "我是次线程 " << (char*)name << endl;
        sleep(1);

        // 直接终止进程,退出码设为 10
        exit(10);
    }
    delete[] (char*)name;

    return nullptr;
}

每个线程顶多存活一秒(存活在同一秒中)就被终止了,通过 echo $? 查询最近一次退出码,正是 10

Linux多线程【线程控制】_第18张图片

其实 原生线程库 中有专门终止线程运行的接口 pthread_exit,专门用来细粒度地终止线程,谁调用就终止谁,不会误伤其他线程

#include 

void pthread_exit(void *retval);

仅有一个参数 void*用于传递线程退出时的信息

这个参数名叫 retvalpthread_join 中的参数2也叫 retval,两者有什么不可告人的秘密吗?
答案是这俩其实本质上是同一个东西,pthread_join 中的 void **retval 是一个输出型参数,可以把一个 void * 指针的地址传递给 pthread_join 函数,当线程调用 pthread_exit 退出时,可以根据此地址对 retval 赋值,从而起到将退出信息返回给主线程的作用

Linux多线程【线程控制】_第19张图片

为什么 pthread_join 中的参数2类型为 void**

  • 因为主线程和次线程此时并不在同一个栈帧中,要想远程修改值就得传地址,类似于 int -> &int,不过这里的 retval 类型是 void*

注意: 直接在 回调方法 中 return 退出信息,主线程中的 retval 也是可以得到信息的,因为类型都是 void*,彼此相互呼应

所以比较完善的多线程操作应该是这样的:

#include 
#include 
#include 

using namespace std;

#define NUM 5

void* threadRun(void *name)
{
    cout << "我是次线程 " << (char*)name << endl;
    sleep(1);

    delete[] (char*)name;

    pthread_exit((void*)"EXIT");

    // 直接return "EXIT" 也是可以的
    // return (void*)"EXIT";
}

int main()
{
    pthread_t pt[NUM];

    for(int i = 0; i < NUM; i++)
    {
        // 注册新线程的信息
        char *name = new char[64];
        snprintf(name, 64, "thread-%d", i + 1);
        pthread_create(pt + i, nullptr, threadRun, name);
    }

    // 等待次线程运行结束
    void *retval = nullptr;
    for(int i = 0; i < NUM; i++)
    {
        int ret = pthread_join(pt[i], &retval);
        if(ret != 0)
            cerr << "等待线程 " << pt[i] << " 失败!" << endl;
        cout << "线程 " << pt[i] << " 等待成功,退出信息是 " << (const char*)retval << endl;
    }

    cout << "所有线程都退出了" << endl;

    return 0;
}

void* 非常之强大,可以指向任意类型的数据,甚至是一个对象

Linux多线程【线程控制】_第20张图片

既然线程复用进程的设计思想,为什么线程退出时不需要考虑是否正常退出、错误码是什么之类的?

  • 因为线程是进程的一部分,在进程中获取线程的错误信息等是无意义的,前面说过,如果一个线程因错误而被终止了,那么整个进程也就都活不了了,错误信息甄别交给父进程去完成,因此 pthread_join 就没必要关注线程退出时的具体状态了;如果次线程有信息要交给主线程,可以通过 retval 输出型参数获取

2.4、线程实战

无论是 pthread_create 还是 pthread_join,他们的参数都有一个共同点:包含了一个 void* 类型的参数,这就是意味着我们可以给线程传递对象,并借此进行某种任务处理

比如我们先创建一个包含一下信息的线程信息类,用于计算 [0, N] 的累加和

  • 线程名字(包含 ID
  • 线程编号
  • 线程创建时间
  • 待计算的值 N
  • 计算结果
  • 状态

为了方便访问成员,权限设为 public

// 线程信息类的状态
enum class Status
{
    OK = 0,
    ERROR
};

// 线程信息类
class ThreadData
{
public:
    ThreadData(const string &name, int id, int n)
        :_name(name)
        ,_id(id)
        ,_createTime(time(nullptr))
        ,_n(n)
        ,_result(0)
        ,_status(Status::OK)
    {}

public:
    string _name;
    int _id;
    time_t _createTime;
    int _n;
    int _result;
    Status _status;
};

此时就可以编写 回调方法 中的业务逻辑了

void* threadRun(void *arg)
{
    ThreadData *td = static_cast<ThreadData*>(arg);

    // 业务处理
    for(int i = 0; i <= td->_n; i++)
        td->_result += i;
    
    // 如果业务处理过程中发现异常行为,可以设置 _status 为 ERROR
    
    cout << "线程 " << td->_name << " ID " << td->_id << " CreateTime " << td->_createTime << " done..." << endl;

    pthread_exit((void*)td);

    // 也可以直接 return 
    // return td;
}

主线程在创建线程及等待线程时,就可以使用 ThreadData 对象了,后续涉及业务修改时,也只需要修改类及回调方法即可,无需再更改创建及等待逻辑,有效做到了 解耦

int main()
{
    pthread_t pt[NUM];

    for(int i = 0; i < NUM; i++)
    {
        // 注册新线程的信息
        char name[64];
        snprintf(name, sizeof(name), "thread-%d", i + 1);

        // 创建对象
        ThreadData *td = new ThreadData(name, i, 100 * (10 + i));
        pthread_create(pt + i, nullptr, threadRun, td);
        sleep(1); // 尽量拉开创建时间
    }

    // 等待次线程运行结束
    void *retval = nullptr;
    for(int i = 0; i < NUM; i++)
    {
        int ret = pthread_join(pt[i], &retval);
        if(ret != 0)
            cerr << "等待线程 " << pt[i] << " 失败!" << endl;

        ThreadData *td = static_cast<ThreadData*>(retval);

        if(td->_status == Status::OK)
            cout << "线程 " << pt[i] << " 计算 [0, " << td->_n << "] 的累加和结果为 " << td->_result << endl;
        delete td;
    }

    cout << "所有线程都退出了" << endl;

    return 0;
}

程序可以正常运行,各个线程也都能正常计算出结果;这里只是简单计算累加和,线程还可以用于其他场景:网络传输、密集型计算、多路 IO等,无非就是修改线程的业务逻辑

Linux多线程【线程控制】_第21张图片

结论:多线程可以传递对象指针,自由进行任务处理

2.5、其他接口

与多线程相关的还有一批其他接口,比较简单,就放在一起介绍了

2.5.1、关闭线程

线程可以被创建,自然也可以被关闭,可以使用 pthread_cancel 关闭已经创建并运行中的线程

#include 

int pthread_cancel(pthread_t thread);

参数1 pthread_t被关闭的线程 ID

返回值:成功返回 0,失败返回一个非零的 error number

这里可以直接模拟关闭线程的场景

#include 
#include 
#include 
#include 
#include 

using namespace std;

void *threadRun(void *arg)
{
    const char *ps = static_cast<const char*>(arg);

    while(true)
    {
        cout << "线程 " << ps << " 正在运行" << endl;
        sleep(1);
    }

    pthread_exit((void*)10);
}

int main()
{
    pthread_t t;
    pthread_create(&t, nullptr, threadRun, (void*)"Hello Thread");

    // 3秒后关闭线程
    sleep(3);

    pthread_cancel(t);

    void *retval = nullptr;
    pthread_join(t, &retval);

    // 细节:使用 int64_t 而非 uint64_t
    cout << "线程 " << t << " 已退出,退出信息为 " << (int64_t)retval << endl;
    return 0;
}

程序运行 3 秒后,可以看到退出信息为 -1,与我们预设的 10 不相符

Linux多线程【线程控制】_第22张图片

原因很简单:只要是被 pthread_cancel 关闭的线程,退出信息统一为 PTHREAD_CANCELED-1

这也就解释了为什么要强转为 ingt64_t,因为无符号的 -1 非常大,不太好看

Linux多线程【线程控制】_第23张图片

比较奇怪的实验

  • 次线程可以自己关闭自己吗?答案是可以的,但貌似关闭后,主线程没有正常等待,整个进程一四正常结束(退出码为 0
  • 次线程可以关闭主线程吗?答案是不可以,类似于 kill -9 无法终止 1 号进程

2.5.2、获取线程ID

线程 ID 是线程的唯一标识符,可以通过 pthread_self 获取当前线程的 ID

#include 

pthread_t pthread_self(void);

返回值:当前线程的 ID

#include 
#include 
#include 
#include 
#include 

using namespace std;

void *threadRun(void *arg)
{
    cout << "当前次线程的ID为 " << pthread_self() << endl;
    return nullptr;
}

int main()
{
    pthread_t t;
    pthread_create(&t, nullptr, threadRun, nullptr);

    pthread_join(t, nullptr);
    cout << "创建的次线程ID为 " << t << endl;

    return 0;
}

可以看到结果都是一样的

Linux多线程【线程控制】_第24张图片

2.5.3、线程分离

父进程需要阻塞式等待子进程退出,主线程等该次线程时也是阻塞式等待,父进程可以设置为 WNOHANG,变成轮询式等待,避免自己一直处于阻塞;次线程该如何做才能避免等待时阻塞呢?

答案是 分离 Detach

线程在被创建时,默认属性都是 joinable 的,即主线程需要使用 pthread_join 来等待次线程退出,并对其进行资源释放;实际上我们可以把这一操作留给系统自动处理,如此一来主线程就可以不必等待次线程,也就可以避免等待时阻塞了,这一操作叫做 线程分离

原生线程库 提供的线程分离接口是 pthread_detach

#include 

int pthread_detach(pthread_t thread);

参数1 pthread_t待分离的线程 ID

返回值:成功返回 0,失败返回 error number

线程分离的本质是将 joinable 属性修改为 detach,告诉系统线程退出后资源自动释放

注意: 如果线程失去了 joinable 属性,就无法被 join,如果 join 就会报错

接下来简单使用一下 线程分离

#include 
#include 
#include 
#include 
#include 

using namespace std;

void *threadRun(void *arg)
{
    int n = 3;
    while(n)
    {
        cout << "次线程 " << n-- << endl;
        sleep(1);
    }
}

int main()
{
    pthread_t t;
    pthread_create(&t, nullptr, threadRun, nullptr);

    pthread_detach(t);

    int n = 5;
    while(n)
    {
        cout << "主线程 " << n-- << endl;
        sleep(1);
    }


    return 0;
}

主线程可以不用等待次线程,两个执行流并发运行,并且不必担心次线程出现僵尸问题

Linux多线程【线程控制】_第25张图片

建议将 pthread_detach 放在待分离线程的 线程创建 语句之后,如果放在线程执行函数中,可能会因为调度优先级问题引发错误(未知结果)

  • 线程被创建后,谁先执行不确定

总之,线程被分离后,主线程就可以不必关心了,即不需要 join 等待,是否分离线程取决于具体的应用场景


3、深入理解线程

3.1、理解线程库及线程 ID

在见识过 原生线程库 提供的一批便利接口后,不由得感叹库的强大,如此强大的库究竟是如何工作的呢?

Linux多线程【线程控制】_第26张图片

原生线程库本质上也是一个文件,是一个存储在 /lib64 目录下的动态库,要想使用这个库,就得在编译时带上 -lpthread 指明使用动态库

程序运行时,原生线程库 需要从 磁盘 加载至 内存 中,再通过 进程地址空间 映射至 共享区 中供线程使用

Linux多线程【线程控制】_第27张图片

由于用户并不会直接使用 轻量级进程 的接口,于是 需要借助第三方库进行封装,类似于用户可能不了解系统提供的 文件接口,从而使用 C语言 封装的 FILE 库一样

Linux多线程【线程控制】_第28张图片

对于 原生线程库 来说,线程不止一个,因此遵循 先描述,再组织 原则,在线程库中创建 TCB 结构(类似于 PCB),其中存储 线程 的各种信息,比如 线程独立栈 信息

Linux多线程【线程控制】_第29张图片
在内存中,整个 线程库 就像一个 “数组”,其中的一块块空间聚合排布 TCB 信息,而 每个 TCB 的起始地址就表示当前线程的 ID,地址是唯一的,因此线程 ID 也是唯一的

因此,我们之前打印 pthread_t 类型的 线程 ID 时,实际打印的是地址,不过是以 十进制 显示的,可以通过函数将地址转化为使用 十六进制 显示

#include 
#include 
#include 
#include 

using namespace std;

string toHex(pthread_t t)
{
    char id[64];
    snprintf(id, sizeof(id), "0x%x", t);
    return id;
}

void *threadRun(void *arg)
{
    cout << "我是[次线程],我的ID是 " << toHex(pthread_self()) << endl;

    return (void*)0;
}

int main()
{
    pthread_t t;
    pthread_create(&t, nullptr, threadRun, nullptr);

    pthread_join(t, nullptr);

    cout << "我是[主线程],我的ID是 " << toHex(pthread_self()) << endl;


    return 0;
}

线程 ID 确实能转化为地址(虚拟进程地址空间上的地址)

Linux多线程【线程控制】_第30张图片

注意: 即便是 C++11 提供的 thread 线程库,在 Linux 平台中运行时,也需要带上 -lpthread 选项,因为它本质上是对 原生线程库 的封装

3.2、理解线程独立栈

线程 之间存在 独立栈,可以保证彼此之前执行任务时不会相互干扰,可以通过代码证明

多个线程使用同一个入口函数,并打印其中临时变量的地址

#include 
#include 
#include 
#include 

using namespace std;

string toHex(pthread_t t)
{
    char id[64];
    snprintf(id, sizeof(id), "0x%x", t);
    return id;
}

void *threadRun(void *arg)
{
    int tmp = 0;
    cout << "thread " << toHex(pthread_self()) << " &tmp: " << &tmp << endl;

    return (void*)0;
}

int main()
{
    pthread_t t[5];
    for(int i = 0; i < 5; i++)
    {
        pthread_create(t + i, nullptr, threadRun, nullptr);
        sleep(1);
    }

    for(int i = 0; i < 5; i++)
        pthread_join(t[i], nullptr);
    return 0;
}

可以看到五个线程打印 “同一个” 临时变量的地址并不相同,足以证明 线程独立栈 的存在

Linux多线程【线程控制】_第31张图片

存在这么多 栈结构CPU 在运行时是如何区分的呢?

答案是 通过 栈顶指针 ebp 和 栈底指针 esp 进行切换ebpespCPU 中两个非常重要的 寄存器,即便是程序启动,也需要借助这两个 寄存器main 函数开辟对应的 栈区

Linux多线程【线程控制】_第32张图片

除了移动 esp 扩大栈区外,还可以同时移动 ebpesp 更改当前所处栈区

Linux多线程【线程控制】_第33张图片

所以,多线程中 独立栈 可以通过 ebpesp 轻松切换并使用

如果想要在栈区中开辟整型空间,可以使用 ebp - 4 定位对应的空间区域并使用,其他类型也是如此,原理都是 基地址 + 偏移量

注意:

  1. 所有线程都要有自己独立的栈结构(独立栈),主线程中用的是进程系统栈,次线程用的是库中提供的栈
  2. 多个线程调用同一个入口函数(回调方法),其中的局部变量地址一定不一样,因为存储在线程独立栈中

3.3、理解线程局部存储

线程 之间共享 全局变量,对 全局变量 进行操作时,会影响其他线程

#include 
#include 
#include 
#include 

using namespace std;

int g_val = 100;

string toHex(pthread_t t)
{
    char id[64];
    snprintf(id, sizeof(id), "0x%x", t);
    return id;
}

void *threadRun(void *arg)
{
    cout << "thread: " << toHex(pthread_self()) << " g_val: " << ++g_val << " &g_val: " << &g_val << endl;
    return (void*)0;
}

int main()
{
    pthread_t t[3];
    for(int i = 0; i < 3; i++)
    {
        pthread_create(t + i, nullptr, threadRun, nullptr);
        sleep(1);
    }

    for(int i = 0; i < 3; i++)
        pthread_join(t[i], nullptr);
    return 0;
}

在三个线程的影响下,g_val 最终变成了 103

Linux多线程【线程控制】_第34张图片

如何让全局变量私有化呢?即每个线程看到的全局变量不同

可以给全局变量加 __thread 修饰,修饰之后,全局变量不再存储至全局数据区,而且存储至线程的 局部存储区中

__thread int g_val = 100;

结果:修饰之后,每个线程确实看到了不同的 “全局变量”

特点:此时的 “全局变量” 的地址变大了

Linux多线程【线程控制】_第35张图片

“全局变量” 地址变大是因为此时它不再存储在 全局数据区 中,而且存储在线程的 局部存储区 中,线程的局部存储区位于 共享区,并且 共享区 的地址天然大于 全局数据区

Linux多线程【线程控制】_第36张图片

注意: 局部存储区位于共享区中,可以通过 __thread 修饰来改变变量的存储位置


总结

以上就是本次关于 Linux多线程【线程控制】的全部内容了,在本文中我们首先补充了线程理解的相关知识,明白线程的私有与共享资源;然后学习了一批原生线程库中的接口,包括创建、等待、终止等;最后深入学习了线程库及线程资源的知识。有了线程控制的相关知识后,就可以开始着手编写多线程代码了,在写代码的过程中,必然会遇到 [并发访问] 问题,解决方法在于 [线程互斥与同步]


星辰大海

相关文章推荐

Linux多线程 =====:>
【初始多线程】

Linux进程信号 ===== :>
【信号产生】、【信号保存】、【信号处理】

Linux进程间通信 ===== :>

【消息队列、信号量】、【共享内存】、【命名管道】、【匿名管道】

Linux基础IO ===== :>

【软硬链接与动静态库】、【深入理解文件系统】、【模拟实现C语言文件流】、【重定向及缓冲区理解】、【文件理解与操作】

Linux进程控制 ===== :>

【简易版bash】、【进程程序替换】、【创建、终止、等待】

Linux进程学习 ===== :>

【进程地址】、【环境变量】、【进程状态】、【基本认知】

Linux基础 ===== :>

【gdb】、【git】、【gcc/g++】、【vim】、Linux 权限理解和学习、听说Linux基础指令很多?这里都帮你总结好了

你可能感兴趣的:(Linux学习之旅,linux,运维,服务器,多线程,pthread)