C++下基于粒子群算法解决TSP问题

粒子群优化算法求解TSP旅行商问题C++(2020.11.12)_jing_zhong的博客-CSDN博客

混合粒子群算法(PSO):C++实现TSP问题 - 知乎 (zhihu.com)

一、原理

又是一个猜答案的算法,和遗传算法比较像,也是设置迭代次数,控制什么时候结束,然后设置粒子种群,每个种群代表一个访问城市的路径,代价函数就是访问一遍的路径和。

初始的时候,随机初始化30个粒子群(可自己设置),然后从这30个例子群里,找一个种群代价最优的结果,存入gbest路径。接着就是每次迭代更新粒子种群,更新思路是每个粒子包含一条访问城市的路径,对每个粒子中的点产生一个速度(这个速度有一共对应公式,v = w * v_cur + c1 * r1 * (x_best - x_cur) +c2 * r2(x_gbest - x_cur)),通过这个速度更新访问城市的路径(x = x + v),当然这个速度作用于城市序号上,会产生小数和重叠,以及不能让这个速度太大,需要限定在一定范围内,如果出现城市序号重复,则需要将重复的序号换成没有出现的序号。

最后每迭代一次,计算一次全局最优粒子,直到迭代结束。

如果访问29个城市,暴力枚举需要计算28!= 304 888 344 611 713 860 501 504 000 000 。可见随着城市数量的增加,计算量是指数级上升,如果使用粒子群算法,计算量30*500=15000,计算量是线性的,确实很有优势。

二、代码 

   1    1150.0  1760.0
   2     630.0  1660.0
   3      40.0  2090.0
   4     750.0  1100.0
   5     750.0  2030.0
   6    1030.0  2070.0
   7    1650.0   650.0
   8    1490.0  1630.0
   9     790.0  2260.0
  10     710.0  1310.0
  11     840.0   550.0
  12    1170.0  2300.0
  13     970.0  1340.0
  14     510.0   700.0
  15     750.0   900.0
  16    1280.0  1200.0
  17     230.0   590.0
  18     460.0   860.0
  19    1040.0   950.0
  20     590.0  1390.0
  21     830.0  1770.0
  22     490.0   500.0
  23    1840.0  1240.0
  24    1260.0  1500.0
  25    1280.0   790.0
  26     490.0  2130.0
  27    1460.0  1420.0
  28    1260.0  1910.0
  29     360.0  1980.0
#include 
#include 
#include 
#include 
#include 
using namespace std;
const int citycount = 29;
double vmax = 1, vmin = -1;
std::default_random_engine random(time(NULL));//通过time这个随机数种子,每次产生不同的随机数
static std::uniform_real_distribution distribution(0.0, std::nextafter(1.0, DBL_MAX));// C++11提供的实数均匀分布模板类  0~1
static std::uniform_real_distribution distribution1(vmin, std::nextafter(vmax, DBL_MAX));//-1~1

class City
{
public:
	string name;//城市名称
	double x, y;//城市点的二维坐标
	void shuchu()
	{
		std::cout << name + ":" << "(" << x << "," << y << ")" << endl;
	}
};

class Graph
{
public:
	City city[citycount];//城市数组
	double distance[citycount][citycount];//城市间的距离矩阵
	void Readcoordinatetxt(string txtfilename)//读取城市坐标文件的函数
	{
		ifstream myfile(txtfilename, ios::in);
		double x = 0, y = 0;
		int z = 0;
		if (!myfile.fail())
		{
			int i = 0;
			while (!myfile.eof() && (myfile >> z >> x >> y))
			{
				city[i].name = to_string(z);//城市名称转化为字符串
				city[i].x = x; city[i].y = y;
				i++;
			}
		}
		else
			cout << "文件不存在";
		myfile.close();
		//计算城市距离矩阵
		for (int i = 0; i < citycount; i++)//29
			for (int j = 0; j < citycount; j++)
			{
				distance[i][j] = sqrt((pow((city[i].x - city[j].x), 2) + pow((city[i].y - city[j].y), 2)) / 10.0);//计算城市ij之间的伪欧式距离
				if (round(distance[i][j] < distance[i][j])) distance[i][j] = round(distance[i][j]) + 1;
				else distance[i][j] = round(distance[i][j]);//round向上取整
			}
	}
	void shuchu()
	{
		cout << "城市名称 " << "坐标x" << " " << "坐标y" << endl;
		for (int i = 0; i < citycount; i++)
			city[i].shuchu();
		cout << "距离矩阵: " << endl;
		for (int i = 0; i < citycount; i++)
		{
			for (int j = 0; j < citycount; j++)
			{
				if (j == citycount - 1)
					std::cout << distance[i][j] << endl;
				else
					std::cout << distance[i][j] << "  ";
			}
		}
	}
};

Graph Map_City;//定义全局对象图,放在Graph类后
int * Random_N(int n)
{
	int *geti;
	geti = new int[n];
	int j = 0;
	while (j < n)
	{
		while (true)
		{
			int flag = -1;
			int temp = rand() % n + 1;//随机取1~29
			if (j > 0)
			{
				int k = 0;
				for (; k < j; k++)
				{
					if (temp == *(geti + k))break;
				}
				if (k == j)
				{
					*(geti + j) = temp;
					flag = 1;
				}
			}
			else
			{
				*(geti + j) = temp;
				flag = 1;
			}
			if (flag == 1)break;
		}
		j++;
	}
	return geti;
}

double Evaluate(int *x)//计算粒子适应值的函数
{
	double fitnessvalue = 0;
	for (int i = 0; i < citycount - 1; i++)
		fitnessvalue += Map_City.distance[x[i] - 1][x[i + 1] - 1];
	fitnessvalue += Map_City.distance[x[citycount - 1] - 1][x[0] - 1];//城市尾与第一个城市的距离,x是一组路线的序号
	return fitnessvalue;
}

class Particle
{
public:
	int *x;//粒子的位置  一条路径
	int *v;//粒子的速度
	double fitness;
	void Init()
	{
		x = new int[citycount];
		v = new int[citycount];
		int *M = Random_N(citycount);//随机生成一组路径
		for (int i = 0; i < citycount; i++)
			x[i] = *(M + i);
		fitness = Evaluate(x);//计算这组路径的代价
		for (int i = 0; i < citycount; i++)
		{
			v[i] = (int)distribution1(random);//产生-1~1之间的随机数
		}
	}
	void shuchu()
	{
		for (int i = 0; i < citycount; i++)
		{
			if (i == citycount - 1)
				std::cout << x[i] << ") = " << fitness << endl;
			else if (i == 0)
				std::cout << "f(" << x[i] << ",";
			else
				std::cout << x[i] << ",";
		}
	}
};

void Adjuxt_validParticle(Particle p)//调整粒子有效性的函数,使得粒子的位置符合TSP问题解的一个排列
{
	int route[citycount];//1-citycount
	bool flag[citycount];//对应route数组中是否在粒子的位置中存在的数组,参考数组为route
	int biaoji[citycount];//对粒子每个元素进行标记的数组,参考数组为粒子位置x
	for (int j = 0; j < citycount; j++)
	{
		route[j] = j + 1;
		flag[j] = false;
		biaoji[j] = 0;
	}
	//首先判断粒子p的位置中是否有某个城市且唯一,若有且唯一,则对应flag的值为true,
	for (int j = 0; j < citycount; j++)
	{
		int num = 0;
		for (int k = 0; k < citycount; k++)
		{
			if (p.x[k] == route[j])
			{
				biaoji[k] = 1;//说明粒子中的k号元素对应的城市在route中,并且是第一次出现才进行标记
				num++; break;
			}
		}
		if (num == 0) flag[j] = false;//粒子路线中没有route[j]这个城市
		else if (num == 1) flag[j] = true;//粒子路线中有route[j]这个城市
	}
	for (int k = 0; k < citycount; k++)
	{
		if (flag[k] == false)//粒子路线中没有route[k]这个城市,需要将这个城市加入到粒子路线中
		{
			int i = 0;
			for (; i < citycount; i++)
			{
				if (biaoji[i] != 1)break;
			}
			p.x[i] = route[k];//对于标记为0的进行替换
			biaoji[i] = 1;
		}
	}
}

class PSO
{
public:
	Particle *oldparticle; //当前粒子种群信息
	Particle *pbest; //每个个体最优
	Particle gbest;//群体最优
	double c1, c2, w;
	int Itetime;
	int popsize;

	void Init(int Pop_Size, int itetime, double C1, double C2, double W)
	{
		Itetime = itetime;//迭代500次
		c1 = C1;//2
		c2 = C2;//2
		w = W;//0.8
		popsize = Pop_Size;//30
		oldparticle = new Particle[popsize];//30个粒子,每个粒子包含一条随机路径
		pbest = new Particle[popsize];//30个粒子
		for (int i = 0; i < popsize; i++)//初始化30次
		{
			oldparticle[i].Init();//初始化30个粒子群
			pbest[i].Init();//初始化30个粒子群
			for (int j = 0; j < citycount; j++)
			{
				pbest[i].x[j] = oldparticle[i].x[j];
				pbest[i].fitness = oldparticle[i].fitness;
			}
		}
		gbest.Init(); //初始化一个粒子群
		gbest.fitness = INFINITY;//初始设为极大值
		for (int i = 0; i < popsize; i++)//遍历30个粒子群
		{
			if (pbest[i].fitness < gbest.fitness)//如果当前粒子群代价比种群最小的代价还小,则更新其
			{
				gbest.fitness = pbest[i].fitness;
				for (int j = 0; j < citycount; j++)//29个城市点
					gbest.x[j] = pbest[i].x[j];//最优路径的路径
			}
		}
	}

	void Shuchu()
	{
		for (int i = 0; i < popsize; i++)
		{
			std::cout << "粒子" << i + 1 << "->";
			oldparticle[i].shuchu();
		}

		std::cout << "当前最优粒子:" << std::endl;
		gbest.shuchu();
	}
	void PSO_TSP(int Pop_size, int itetime, double C1, double C2, double W, double Vlimitabs, string filename)
	{
		Map_City.Readcoordinatetxt(filename);//计算城市间距离矩阵
		Map_City.shuchu();//输出初始城市位置和距离矩阵
		vmax = Vlimitabs; //3
		vmin = -Vlimitabs;//-3
		Init(Pop_size, itetime, C1, C2, W);//在随机初始的粒子群中,找到一个最优的粒子
		std::cout << "初始化后的种群如下:" << endl;
		Shuchu();//输出初始种群及最优路径

		//向文件中写入城市坐标,距离矩阵
		ofstream outfile;
		outfile.open("result.txt", ios::trunc);
		outfile << "城市名称 " << "坐标x" << " " << "坐标y" << endl;
		for (int i = 0; i < citycount; i++)
			outfile << Map_City.city[i].name << " " << Map_City.city[i].x << " " << Map_City.city[i].y << endl;
		outfile << "距离矩阵: " << endl;
		for (int i = 0; i < citycount; i++)
		{
			for (int j = 0; j < citycount; j++)
			{
				if (j == citycount - 1)
					outfile << Map_City.distance[i][j] << endl;
				else
					outfile << Map_City.distance[i][j] << "  ";
			}
		}


		outfile << "初始化后的种群如下:" << endl;
		for (int i = 0; i < popsize; i++)
		{
			outfile << "粒子" << i + 1 << "->";
			for (int j = 0; j < citycount; j++)//29
			{
				if (j == citycount - 1)
					outfile << oldparticle[i].x[j] << ") = " << oldparticle[i].fitness << endl;
				else if (j == 0)
					outfile << "f(" << oldparticle[i].x[j] << ",";
				else
					outfile << oldparticle[i].x[j] << ",";
			}
		}


		for (int ite = 0; ite < Itetime; ite++)//500次
		{
			for (int i = 0; i < popsize; i++)//30
			{
				//更新粒子速度和位置
				for (int j = 0; j < citycount; j++)//29
				{
					//v= w*v_oldP + c1*r1*(x_bestP - x_oldP) +c2*r2(x_gbest - x_oldP)
					oldparticle[i].v[j] = (int)(w*oldparticle[i].v[j] + c1 * distribution(random)*(pbest[i].x[j] - oldparticle[i].x[j]) + c2 * distribution(random)*(gbest.x[j] - oldparticle[i].x[j]));
					if (oldparticle[i].v[j] > vmax)//粒子速度越界调整
						oldparticle[i].v[j] = (int)vmax;
					else if (oldparticle[i].v[j] < vmin)
						oldparticle[i].v[j] = (int)vmin;
					oldparticle[i].x[j] += oldparticle[i].v[j];//x=x+v
					if (oldparticle[i].x[j] > citycount)oldparticle[i].x[j] = citycount;//粒子位置越界调整  让路径的每个点像速度一样变化取整
					else if (oldparticle[i].x[j] < 1) oldparticle[i].x[j] = 1;
				}

				//粒子位置有效性调整,必须满足解空间的条件
				Adjuxt_validParticle(oldparticle[i]);//对重复的城市去重
				oldparticle[i].fitness = Evaluate(oldparticle[i].x);//计算当前粒子的代价
				pbest[i].fitness = Evaluate(pbest[i].x);
				if (oldparticle[i].fitness < pbest[i].fitness)//如果当前粒子的代价比之前历史中粒子的代价都小,则替换为历史最小代价
				{
					for (int j = 0; j < citycount; j++)
						pbest[i].x[j] = oldparticle[i].x[j];
				}//更新单个粒子的历史极值
				for (int j = 0; j < citycount; j++)
					gbest.x[j] = pbest[i].x[j];//更新全局极值

				for (int k = 0; k < popsize && k != i; k++)//30  从单个最优中找一个全局最优保存起来
				{
					if (Evaluate(pbest[k].x) < Evaluate(gbest.x))
					{
						for (int j = 0; j < citycount; j++)
							gbest.x[j] = pbest[k].x[j];
						gbest.fitness = Evaluate(gbest.x);
					}
				}
			}//迭代30次

			outfile << "第" << ite + 1 << "次迭代后的种群如下:" << endl;
			for (int i = 0; i < popsize; i++)
			{
				outfile << "粒子" << i + 1 << "->";
				for (int j = 0; j < citycount; j++)
				{
					if (j == citycount - 1)
						outfile << oldparticle[i].x[j] << ") = " << oldparticle[i].fitness << endl;
					else if (j == 0)
						outfile << "f(" << oldparticle[i].x[j] << ",";
					else
						outfile << oldparticle[i].x[j] << ",";
				}
			}
			std::cout << "第" << ite + 1 << "次迭代后的最好粒子:";
			outfile << "第" << ite + 1 << "次迭代后的最好粒子:" << endl;
			for (int j = 0; j < citycount; j++)
			{
				if (j == citycount - 1)
					outfile << gbest.x[j] << ") = " << gbest.fitness << endl;
				else if (j == 0)
					outfile << "f(" << gbest.x[j] << ",";
				else
					outfile << gbest.x[j] << ",";
			}
			gbest.shuchu();//每次迭代的全局最优
		}
		outfile.close();
	}
};


int main()
{
	PSO pso;
	std::cout << "粒子群优化算法求解TSP旅行商问题" << endl;
	pso.PSO_TSP(30, 500, 2, 2, 0.8, 3.0, "data.txt");
	system("pause");
	return 0;
}

C++下基于粒子群算法解决TSP问题_第1张图片

你可能感兴趣的:(多无人机集群编队,c++,开发语言)