【RocketMQ专题】快速实战及集群架构原理详解

目录

  • 课程内容
    • 一、MQ简介
      • 基本介绍
      • *作用(解决什么问题)
    • 二、RocketMQ产品特点
      • 2.1 RocketMQ介绍
      • 2.2 RocketMQ特点
      • 2.3 RocketMQ的运行架构
    • 三、RocketMQ快速实战
      • 3.1 快速搭建RocketMQ服务
      • 3.2 快速实现消息收发
      • 3.3 搭建Maven客户端项目
      • 3.4 搭建RocketMQ可视化管理服务
      • 3.5 升级分布式集群
    • 四、理解 RocketMQ的消息模型
  • 学习总结
  • 感谢

课程内容

一、MQ简介

基本介绍

MQ:即MessageQueue,消息队列。是在互联网中使用非常广泛的一系列服务中间件。 这个词可以分两个部分来看:

  • Message:消息。消息是在不同进程之间传递的数据。这些进程可以部署在同一台机器上,也可以分布在不同机器上
  • Queue:队列。队列原意是指一种具有FIFO(先进先出)特性的数据结构,是用来缓存数据的。

对于消息中间件产品来说,能不能保证FIFO特性,尚值得考量。但是,所有消息队列都是需要具备存储消息,让消息排队的能力。广义上来说,只要能够实现消息跨进程传输以及队列数据缓存,就可以称之为消息队列。例如我们常用的QQ、微信、阿里旺旺等就都具备了这样的功能。只不过他们对接的使用对象是人,而我们这里讨论的MQ产品需要对接的使用对象是应用程序。

*作用(解决什么问题)

作用一:异步
例子:我们购物的时候,通常需要跟库存系统、支付系统、订单系统、以及物流系统打交道
我们先来看一个,有MQ跟没MQ的时候,电商购物场景下的模型图。
【RocketMQ专题】快速实战及集群架构原理详解_第1张图片
分析:在无MQ场景下,我们购物下单的时候,我们可能会串行地执行每一个系统,只有等所有系统执行完了,才会返回结果给用户。所以,用户购物的时候,需要等待50ms + 80ms + 100ms + 120ms=350ms才行
(也许有朋友会反驳我说:我没MQ难道不能用线程池吗?是这样,这里为了引出异步,我特意把场景画成了同步。事实上,要想实现异步的方式有很多,不止是MQ)
【RocketMQ专题】快速实战及集群架构原理详解_第2张图片
我们再看看上图有MQ的场景下。我们购物下单的时候,无需等待每一个系统执行完了,而只是把这件事情告诉MQ即可。此时,我们只需要等待5ms即可。

通过上面的分析,我们不难看出,使用MQ,具有:异步能提高系统的响应速度、吞吐量的作用。
【RocketMQ专题】快速实战及集群架构原理详解_第3张图片
作用二:解耦
例子:其实还是上面的电商场景,就可以看出来。在串行系统下,有一个很明显的特点,那就是整个购物系统会跟库存系统、支付系统、订单系统、以及物流系统等直接耦合。这导致什么问题?那就是一旦某个环节出错了,那整个购物操作就失败了。
【RocketMQ专题】快速实战及集群架构原理详解_第4张图片
但是,有了MQ,购物系统不再与其他各个系统直接耦合,而是变成了与MQ直接耦合。即:

  1. 购物系统-----耦合-----MQ
  2. MQ-----耦合-----其他系统

这样,一旦【其他系统】中某个环节出错,他是不会影响到【购物系统–耦合–MQ】这段关系的结果的,只会影响【MQ–耦合–其他系统】的结果。而且,大部分MQ还提供了很好的失败重试机制,提升了容错性和可维护性。

通过上面的分析,我们不难看出,使用MQ还具有如下作用:

  1. 服务之间进行解耦,可以减少服务之间的影响,提高系统整体的稳定性以及可扩展性。

(Q1:解耦是什么意思?
答:即,解除耦合。什么是【耦合】?在Java中,若class A的成员属性中,有一class B的对象,则我们称A与B是耦合的。在下图的系统中。若订单服务直接调用库存系统,则称订单服务与库存系统是耦合的。

  1. 另外,解耦后可以实现数据分发。生产者发送一个消息后,可以由一个或者多个消费者进行消费,并且消费者的增加或者减少对生产者没有影响。

【RocketMQ专题】快速实战及集群架构原理详解_第5张图片
作用三:削峰填谷
例子:在电商秒杀场景下, 有可能会出现瞬时流量增多的情况。比如平时每秒最多100单,但是秒杀活动开始后,一下子有成千上万单进来。瞬时的流量暴增,很可能把我们系统给打崩的。通过MQ,可以把这波流量从1秒1W单,转换成10秒1000单的平稳流量,到我们系统。
【RocketMQ专题】快速实战及集群架构原理详解_第6张图片
【RocketMQ专题】快速实战及集群架构原理详解_第7张图片
使用了 MQ 之后,限制消费消息的速度为1000,这样一来,高峰期产生的数据势必会被积压在 MQ 中,高峰就被“削”掉了,但是因为消息积压,在高峰期过后的一段时间内,消费消息的速度还是会维持在1000,直到消费完积压的消息,这就叫做“填谷”。

所以,使用MQ的作用还有:以稳定的系统资源应对突发的流量冲击。
【RocketMQ专题】快速实战及集群架构原理详解_第8张图片

二、RocketMQ产品特点

2.1 RocketMQ介绍

​RocketMQ是阿里巴巴开源的一个消息中间件,在阿里内部历经了双十一等很多高并发场景的考验,能够处理亿万级别的消息。2016年开源后捐赠给Apache,现在是Apache的一个顶级项目。

​早期阿里使用ActiveMQ,但是,当消息开始逐渐增多后,ActiveMQ的IO性能很快达到了瓶颈。于是,阿里开始关注Kafka。但是Kafka是针对日志收集场景设计的,他的高级功能并不是很贴合阿里的业务场景。尤其当他的Topic过多时,由于Partition文件也会过多,这就会加大文件索引的耗时,会严重影响IO性能。于是阿里才决定自研中间件,最早叫做MetaQ,后来改名成为RocketMQ。最早他所希望解决的最大问题就是多Topic下的IO性能压力。但是产品在阿里内部的不断改进,RocketMQ开始体现出一些不一样的优势。

2.2 RocketMQ特点

​ 当今互联网MQ产品众多,其中,影响力和使用范围最大的当数Apache Kafka、RabbitMQ、Apache RocketMQ以及Apache Plusar。这几大产品虽然都是典型的MQ产品,但是由于设计和实现上的一些差异,造成他们适合于不同的细分场景。
【RocketMQ专题】快速实战及集群架构原理详解_第9张图片
​ 其中RocketMQ,孵化自阿里巴巴。历经阿里多年双十一的严格考验,RocketMQ可以说是从全世界最严苛的高并发场景中摸爬滚打出来的过硬产品,也是少数几个在金融场景比较适用的MQ产品。从横向对比来看,RocketMQ与Kafka和RabbitMQ相比。RocketMQ的消息吞吐量虽然和Kafka相比还是稍有差距,但是却比RabbitMQ高很多。在阿里内部,RocketMQ集群每天处理的请求数超过5万亿次,支持的核心应用超过3000个。而RocketMQ最大的优势就是他天生就为金融互联网而生。他的消息可靠性相比Kafka也有了很大的提升,而消息吞吐量相比RabbitMQ也有很大的提升。另外,RocketMQ的高级功能也越来越全面,广播消费、延迟队列、死信队列等等高级功能一应俱全,甚至某些业务功能比如事务消息,已经呈现出领先潮流的趋势。

2.3 RocketMQ的运行架构

图是RocketMQ运行时的整体架构:
【RocketMQ专题】快速实战及集群架构原理详解_第10张图片
根据上面的架构模型图,整个MQ会包含以下概念:

  • NameServer命名服务器
    NameServer是整个RocketMQ的【大脑】,主要存储Topic路由信息,以及Broker的地址信息。它是RocketMQ的服务注册中心,所以RocketMQ需要先启动NameServer再启动Broker。
    Broker在启动时向所有NameServer注册自己的信息(主要是服务器地址等),生产者在发送消息之前先从NameServer获取Broker服务器地址列表(消费者一样),然后根据负载均衡算法从列表中选择一台服务器进行消息发送。
    NameServer与每台Broker服务保持长连接,并间隔30S检查Broker是否存活,如果检测到Broker宕机,则从路由注册表中将其移除。这样就可以实现RocketMQ的高可用。

  • Broker消息存储中心
    Broker服务器,是消息存储中心,主要作用是接收来自 Producer 的消息并存储,Consumer 从这里取得消息。它还存储与消息相关的元数据,包括用户组、消费进度偏移量、队列信息等。从部署结构图中可以看出 Broker 有 Master 和 Slave 两种类型,Master 既可以写又可以读,Slave不可以写只可以读。

  • Producer和Conumer(关注生产、消费者模型)
    他们是一种逻辑概念。Producer即生产者,代表往MQ投递消息、任务的系统、模块等;Consumer即消费者,代表从MQ获取消息、任务的系统、模块等

三、RocketMQ快速实战

3.1 快速搭建RocketMQ服务

​ RocketMQ的官网地址: Rocket官网。在下载页面可以获取RocketMQ的源码包以及运行包。下载页面地址
【RocketMQ专题】快速实战及集群架构原理详解_第11张图片
当前最新的版本是5.x,这是一个着眼于云原生的新版本,给 RocketMQ 带来了非常多很亮眼的新特性。但是目前来看,企业中用得还比较少。因此,我们这里采用的还是更为稳定的4.9.5版本
运行只需要下载Binary运行版本就可以了。 当然,源码包也建议下载下来,后续会进行解读。运行包下载下来后,就可以直接解压,上传到服务器上。我们这里会上传到/app/rocketmq目录。解压后几个重要的目录如下:
【RocketMQ专题】快速实战及集群架构原理详解_第12张图片
​接下来,RocketMQ建议的运行环境需要至少12G的内存,这是生产环境比较理想的资源配置。但是,学习阶段,如果你的服务器没有这么大的内存空间,那么就需要做一下调整。进入bin目录,对其中的runserver.sh和runbroker.sh两个脚本进行一下修改。
使用vi runserver.sh指令,编辑这个脚本,找到下面的一行配置,调整Java进程的内存大小。

JAVA_OPT="${JAVA_OPT} -server -Xms512m -Xmx512m -Xmn256m -XX:MetaspaceSize=128m -XX:MaxMetaspaceSize=320m"

​接着,同样调整runbroker.sh中的内存大小。(生产环境不建议调整

JAVA_OPT="${JAVA_OPT} -server -Xms8g -Xmx8g"
修改为:
JAVA_OPT="${JAVA_OPT} -server -Xms1g -Xmx1g"

​ 调整完成后,就可以启动RocketMQ服务了(PS:RocketMQ服务基于Java开发,所以需要提前安装JDK。JDK建议采用1.8版本即可
RocketMQ的后端服务分为nameserver和broker两个服务,关于他们的作用,后面会给你分享。接下来我们先将这两个服务启动起来。

第一步:启动nameserver服务

cd /app/rocketmq/rocketmq-all-4.9.5-bin-release
nohup bin/mqnamesrv &

指令执行后,会生成一个nohup.out的日志文件。在这个日志文件里如果看到下面这一条关键日志,就表示nameserver服务启动成功了。

Java HotSpot(TM) 64-Bit Server VM warning: Using the DefNew young collector 
with the CMS 
collector is deprecated and will likely be removed in a future release 
Java HotSpot(TM) 64-Bit Server VM warning: UseCMSCompactAtFullCollection is 
deprecated and 
will likely be removed in a future release. 
The Name Server boot success. serializeType=JSON 

​ 接下来,可以通过jsp指令进行验证。使用jps指令后,可以看到有一个NamesrvStartup的进程运行,也表示nameserver服务启动完成。
第二步:启动broker服务
​ 启动broker服务之前,要做一个小小的配置。进入RocketMQ安装目录下的conf目录,修改broker.conf文件,在文件最后面加入一个配置:

autoCreateTopicEnable=true

注意:上面选项是为了便于进行后续实验。他的作用是允许 broker 端自动创建新的 Topic。另外,如果你的服务器配置了多张网卡,比如阿里云,腾讯云这样的云服务器,他们通常有内网网卡和外网网卡两张网卡,那么需要增加配置brokerIP1属性,指向服务器的外网IP 地址,这样才能确保从其他服务器上访问到RocketMQ 服务。
然后也可以用之前的方式启动broker服务。启动broker服务的指令是mqbroker:

cd /app/rocketmq/rocketmq-all-4.9.5-bin-release
nohup bin/mqbroker &

启动完成后,同样检查nohup.out日志文件,有如下一条关键日志,就表示broker服务启动正常了。

The broker[xxxxx] boot success. serializeType=JSON 

3.2 快速实现消息收发

RocketMQ后端服务启动完成后,就可以启动客户端的消息生产者和消息消费者进行消息转发了。接下来,我们会先通过RocketMQ提供的命令行工具快速体验一下RocketMQ消息收发的功能。然后,再动手搭建一个Maven项目,在项目中使用RocketMQ进行消息收发。

1. 命令行快速实现消息收发

第一步:需要配置一个环境变量NAMESRV_ADDR,指向我们之前启动的nameserver服务。
通过vi ~/.bash_profile添加以下配置。然后使用source ~/.bash_profile让配置生效。

export NAMESRV_ADDR='localhost:9876' 

第二步:通过指令启动RocketMQ的消息生产者发送消息。

tools.sh org.apache.rocketmq.example.quickstart.Producer 

这个指令会默认往RocketMQ中发送1000条消息。在命令行窗口可以看到发送消息的日志:

SendResult [sendStatus=SEND_OK, msgId=C0A8E88007AC3764951D891CE9A003E7, 
offsetMsgId=C0A8E88000002A9F00000000000317BF, messageQueue=MessageQueue 
[topic=TopicTest, brokerName=worker1, queueId=1], queueOffset=249] 

14:59:33.418 [NettyClientSelector_1] INFO RocketmqRemoting - closeChannel: 
close the connection to remote address[127.0.0.1:9876] result: true 

14:59:33.423 [NettyClientSelector_1] INFO RocketmqRemoting - closeChannel: 
close the connection to remote address[192.168.232.128:10911] result: true

注:这部分日志中,并没有打印出发送了什么消息。上面SendResult开头部分是消息发送到Broker后的结果。最后两行日志表示消息生产者发完消息后,服务正常关闭了。

第三步:可以启动消息消费者接收之前发送的消息

tools.sh org.apache.rocketmq.example.quickstart.Consumer

消费者启动完成后,可以看到消费到的消息

ConsumeMessageThread_19 Receive New Messages: [MessageExt 
[brokerName=worker1, queueId=2, storeSize=203, queueOffset=53, sysFlag=0, 
bornTimestamp=1606460371999, bornHost=/192.168.232.128:43436, 
storeTimestamp=1606460372000, storeHost=/192.168.232.128:10911, 
msgId=C0A8E88000002A9F000000000000A7AE, commitLogOffset=42926, 
bodyCRC=1968636794, reconsumeTimes=0, preparedTransactionOffset=0, 
toString()=Message{topic='TopicTest', flag=0, properties={MIN_OFFSET=0, 
MAX_OFFSET=250, CONSUME_START_TIME=1606460450150, 
UNIQ_KEY=C0A8E88007AC3764951D891CE41F00D4, CLUSTER=DefaultCluster, 
WAIT=true, TAGS=TagA}, body=[72, 101, 108, 108, 111, 32, 82, 111, 99, 107, 
101, 116, 77, 81, 32, 50, 49, 50], transactionId='null'}]] 

每一条这样的日志信息就表示消费者接收到了一条消息。
这个Consumer消费者的指令并不会主动结束,他会继续挂起,等待消费新的消息。我们可以使用CTRL+C停止该进程。

注:在RocketMQ提供的这个简单示例中并没有打印出传递的消息内容,而是打印出了消息相关的很多重要的属性。
其中有几个比较重要的属性: brokerId,brokerName,queueId,msgId,topic,cluster。这些属性的作用会在后续一起分享,这里你不妨先找一下这些属性是什么,消费者与生产者之间有什么样的对应关系。

3.3 搭建Maven客户端项目

​ 之前的步骤实际上是在服务器上快速验证RocketMQ的服务状态,接下来我们动手搭建一个RocketMQ的客户端应用,在实际应用中集成使用RocketMQ。

第一步:创建一个标准的maven项目,在pom.xml中引入以下核心依赖

<dependency>
    <groupId>org.apache.rocketmqgroupId>
    <artifactId>rocketmq-clientartifactId>
    <version>4.9.5version>
dependency>

第二步:就可以直接创建一个简单的消息生产者

public class Producer {
    public static void main(String[] args) throws MQClientException, InterruptedException {
        //初始化一个消息生产者
        DefaultMQProducer producer = new DefaultMQProducer("please_rename_unique_group_name");
        // 指定nameserver地址
        producer.setNamesrvAddr("192.168.232.128:9876");
        // 启动消息生产者服务
        producer.start();
        for (int i = 0; i < 2; i++) {
            try {
                // 创建消息。消息由Topic,Tag和body三个属性组成,其中Body就是消息内容
                Message msg = new Message("TopicTest","TagA",("Hello RocketMQ " +i).getBytes(RemotingHelper.DEFAULT_CHARSET));
                //发送消息,获取发送结果
                SendResult sendResult = producer.send(msg);
                System.out.printf("%s%n", sendResult);
            } catch (Exception e) {
                e.printStackTrace();
                Thread.sleep(1000);
            }
        }
        //消息发送完后,停止消息生产者服务。
        producer.shutdown();
    }
}

运行其中的main方法,就会往RocketMQ中发送两条消息。在这个实现过程中,需要注意一下的是对于生产者,需要指定对应的nameserver服务的地址,这个地址需要指向你自己的服务器。

第三步:创建一个消息消费者接收RocketMQ中的消息。

public class Consumer {
    public static void main(String[] args) throws InterruptedException, MQClientException {
        //构建一个消息消费者
        DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("please_rename_unique_group_name_4");
        //指定nameserver地址
       consumer.setNamesrvAddr("192.168.232.128:9876");
       consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_LAST_OFFSET);
        // 订阅一个感兴趣的话题,这个话题需要与消息的topic一致
        consumer.subscribe("TopicTest", "*");
        // 注册一个消息回调函数,消费到消息后就会触发回调。
        consumer.registerMessageListener(new MessageListenerConcurrently() {
            @Override
            public ConsumeConcurrentlyStatus consumeMessage(List<MessageExt> msgs,ConsumeConcurrentlyContext context) {
    msgs.forEach(messageExt -> {
                    try {
                        System.out.println("收到消息:"+new String(messageExt.getBody(), RemotingHelper.DEFAULT_CHARSET));
                    } catch (UnsupportedEncodingException e) {}
                });
                return ConsumeConcurrentlyStatus.CONSUME_SUCCESS;
            }
        });
        //启动消费者服务
        consumer.start();
        System.out.print("Consumer Started");
    }
}

​ 运行其中的main方法后,就可以启动一个RocketMQ消费者,接收之前发到RocketMQ上的消息,并将消息内容打印出来。在这个实现过程中,需要重点关注的有两点。一是对于消费者,同样需要指定nameserver的地址。二是消费者需要在RocketMQ中订阅具体的Topic,只有发送到这个Topic上的消息才会被这个消费者接收到。
​ 这样,通过几个简单的步骤,我们就完成了RocketMQ的应用集成。从这个过程中可以看到,RocketMQ的使用是比较简单的。但是这并不意味着这几个简单的步骤就足够搭建一个生产级别的RocketMQ服务。接下来,我们会一步步把我们这个简单的RocketMQ服务往一个生产级别的服务集群推进。

3.4 搭建RocketMQ可视化管理服务

方案一:
​在之前的简单实验中,RocketMQ都是以后台服务的方式在运行,我们并不很清楚RocketMQ是如何运行的。RocketMQ的社区就提供了一个图形化的管理控制台Dashboard,可以用可视化的方式直接观测并管理RocketMQ的运行过程。
Dashboard服务并不在RocketMQ的运行包中,需要到RocketMQ的官网下载页面单独下载。
【RocketMQ专题】快速实战及集群架构原理详解_第13张图片
​ 这里只提供了源码,并没有提供直接运行的jar包。将源码下载下来后,需要解压并进入对应的目录,使用maven进行编译。(需要提前安装maven客户端)

mvn clean package -Dmaven.test.skip=true

​编译完成后,在源码的target目录下会生成可运行的jar包rocketmq-dashboard-1.0.1-SNAPSHOT.jar。接下来可以将这个jar包上传到服务器上。我们上传到/app/rocketmq/rocketmq-dashboard目录下
​ 接下来我们需要在jar包所在的目录下创建一个application.yml配置文件,在配置文件中做如下配置:

rocketmq: 
  config: 
    namesrvAddrs: 
      - 192.168.232.128:9876 

​ 主要是要指定nameserver的地址。

注:关于这个配置文件中更多的配置选项,可以参考一下dashboard源码当中的application.yml配置文件。

​ 接下来就可以通过java指令执行这个jar包,启动管理控制台服务。

java -jar rocketmq-dashboard-1.0.1-SNAPSHOT.jar

​ 应用启动完成后,会在服务器上搭建起一个web服务,我们就可以通过访问http://192.168.232.128:8080查看到管理页面。
【RocketMQ专题】快速实战及集群架构原理详解_第14张图片
​ 这个管理控制台的功能非常全面。驾驶舱页面展示RocketMQ近期的运行情况。运维页面主要是管理nameserver服务。集群页面主要管理RocketMQ的broker服务。很多信息都一目了然。在之后的过程中,我们也会逐渐了解DashBoard管理页面中更多的细节。

方案二:
目前发现很多小伙伴在实践过程中,会出现上述源码编译失败,这边提供一个通过docker启动的方案。这个毕竟只是拓展应用,没必要花这么大精力去解决。

docker run -d --name rocketmq-dashboard -e "JAVA_OPTS=-Drocketmq.namesrv.addr=10.xx.xx.xxx:9876" -p 8080:8080 -t apacherocketmq/rocketmq-dashboard:latest

其中10.xx.xx.xxx可以是外网地址

3.5 升级分布式集群

​之前我们用一台Linux服务器,快速搭建起了一整套RocketMQ的服务。但是很明显,这样搭建的服务是无法放到生产环境上去用的。一旦nameserver服务或者broker服务出现了问题,整个RocketMQ就无法正常工作。而且更严重的是,如果服务器出现了问题,比如磁盘坏了,那么存储在磁盘上的数据就会丢失。这时RocketMQ暂存到磁盘上的消息也会跟着丢失,这个问题就非常严重了。因此,我们需要搭建一个分布式的RocketMQ服务集群,来防止单点故障问题。
​RocketMQ的分布式集群基于主从架构搭建。在多个服务器组成的集群中,指定一部分节点作为Master节点,负责响应客户端的请求。指令另一部分节点作为Slave节点,负责备份Master节点上的数据,这样,当Master节点出现故障时,在Slave节点上可以保留有数据备份,至少保证数据不会丢失。
整个集群方案如下图所示:
【RocketMQ专题】快速实战及集群架构原理详解_第15张图片
接下来我们准备三台相同的Linux服务器,搭建一下RocketMQ的分布式集群。为了更清晰的描述这三台服务器上的操作,我们给每个服务器指定一个机器名。

cat /etc/hosts
192.168.232.128 worker1
192.168.232.129 worker2
192.168.232.130 worker3

​ 为了便于观察,我们这次搭建一个2主2从的RocketMQ集群,并将主节点和节点都分别部署在不同的服务器上。预备的集群规划情况如下:
【RocketMQ专题】快速实战及集群架构原理详解_第16张图片
第一步:部署nameServer服务。
​nameServer服务不需要做特别的配置,按照之前的步骤,在三台服务器上都分别部署nameServer服务即可

第二步:对Broker服务进行集群配置。
​这里需要修改RocketMQ的配置文件,对broker服务做一些集群相关的参数部署。这些配置文件并不需要我们手动进行创建,在RocketMQ运行包的conf目录下,提供了多种集群的部署配置文件模板

  • 2m-noslave: 2主无从的集群参考配置。这种集群存在单点故障。
  • 2m-2s-async和2m-2s-sync: 2主2从的集群参考配置。其中async和sync表示主节点与从节点之间是同步同步还是异步同步。关于这两个概念,会在后续章节详细介绍
  • dledger: 具备主从切换功能的高可用集群。集群中的节点会基于Raft协议随机选举出一个Leader,其作用类似于Master节点。其他的节点都是follower,其作用类似于Slave节点。

我们这次采用2m-2s-async的方式搭建集群,需要在worker2和worker3上修改这个文件夹下的配置文件。
1> 配置第一组broker-a服务
​在worker2机器上配置broker-a的MASTER服务,需要修改conf/2m-2s-async/broker-a.properties。示例配置如下:

#所属集群名字,名字一样的节点就在同一个集群内
brokerClusterName=rocketmq-cluster
#broker名字,名字一样的节点就是一组主从节点。
brokerName=broker-a
#brokerid,0就表示是Master,>0的都是表示 Slave
brokerId=0
#nameServer地址,分号分割
namesrvAddr=worker1:9876;worker2:9876;worker3:9876
#是否允许 Broker 自动创建Topic,建议线下开启,线上关闭
autoCreateTopicEnable=true
deleteWhen=04
fileReservedTime=120
#存储路径
storePathRootDir=/app/rocketmq/store
storePathCommitLog=/app/rocketmq/store/commitlog
storePathConsumeQueue=/app/rocketmq/store/consumequeue
storePathIndex=/app/rocketmq/store/index
storeCheckpoint=/app/rocketmq/store/checkpoint
abortFile=/app/rocketmq/store/abort
#Broker 的角色
brokerRole=ASYNC_MASTER
flushDiskType=ASYNC_FLUSH
#Broker 对外服务的监听端口
listenPort=10911

这里对几个需要重点关注的属性,做下简单介绍:

brokerClusterName: 集群名。RocketMQ会将同一个局域网下所有brokerClusterName相同的服务自动组成一个集群,这个集群可以作为一个整体对外提供服务

brokerName: Broker服务名。同一个RocketMQ集群当中,brokerName相同的多个服务会有一套相同的数据副本。同一个RocketMQ集群中,是可以将消息分散存储到多个不同的brokerName服务上的。

brokerId: RocketMQ中对每个服务的唯一标识。RocketMQ对brokerId定义了一套简单的规则,master节点需要固定配置为0,负责响应客户端的请求。slave节点配置成其他任意数字,负责备份master上的消息。

brokerRole: 服务的角色。这个属性有三个可选项:ASYNC_MASTER,SYNC_MASTER和SLAVE。其中,ASYNC_MASTER和SYNC_MASTER表示当前节点是master节点,目前暂时不用关心他们的区别。SLAVE则表示从节点。

namesrvAddr: nameserver服务的地址。nameserver服务默认占用9876端口。多个nameserver地址用;隔开。

接下来在worekr3上配置broker-a的SLAVE服务。需要修改conf/2m-2s-async/broker-a-s.properties。示例配置如下:

#所属集群名字,名字一样的节点就在同一个集群内
brokerClusterName=rocketmq-cluster
#broker名字,名字一样的节点就是一组主从节点。
brokerName=broker-a
#brokerid,0就表示是Master,>0的都是表示 Slave
brokerId=1
#nameServer地址,分号分割
namesrvAddr=worker1:9876;worker2:9876;worker3:9876
#是否允许 Broker 自动创建Topic,建议线下开启,线上关闭
autoCreateTopicEnable=true
deleteWhen=04
fileReservedTime=120
#存储路径
storePathRootDir=/app/rocketmq/storeSlave
storePathCommitLog=/app/rocketmq/storeSlave/commitlog
storePathConsumeQueue=/app/rocketmq/storeSlave/consumequeue
storePathIndex=/app/rocketmq/storeSlave/index
storeCheckpoint=/app/rocketmq/storeSlave/checkpoint
abortFile=/app/rocketmq/storeSlave/abort
#Broker 的角色
brokerRole=SLAVE
flushDiskType=ASYNC_FLUSH
#Broker 对外服务的监听端口
listenPort=11011

​其中关键是brokerClusterName和brokerName两个参数需要与worker2上对应的broker-a.properties配置匹配。brokerId配置0以为的数字。然后brokerRole配置为SLAVE。
这样,第一组broker服务就配置好了。

2> 配置第二组borker-b服务

​与第一组broker-a服务的配置方式类似,在worker3上配置broker-b的MASTER服务。需要修改conf/2m-2s-async/broker-b.properties文件,配置示例如下:

#所属集群名字,名字一样的节点就在同一个集群内
brokerClusterName=rocketmq-cluster
#broker名字,名字一样的节点就是一组主从节点。
brokerName=broker-b
#brokerid,0就表示是Master,>0的都是表示 Slave
brokerId=0
#nameServer地址,分号分割
namesrvAddr=worker1:9876;worker2:9876;worker3:9876
#是否允许 Broker 自动创建Topic,建议线下开启,线上关闭
autoCreateTopicEnable=true
deleteWhen=04
fileReservedTime=120
#存储路径
storePathRootDir=/app/rocketmq/store
storePathCommitLog=/app/rocketmq/store/commitlog
storePathConsumeQueue=/app/rocketmq/store/consumequeue
storePathIndex=/app/rocketmq/store/index
storeCheckpoint=/app/rocketmq/store/checkpoint
abortFile=/app/rocketmq/store/abort
#Broker 的角色
brokerRole=ASYNC_MASTER
flushDiskType=ASYNC_FLUSH
#Broker 对外服务的监听端口
listenPort=10911

​ 在worker2上配置broker-b的SLAVE服务。需要修改conf/2m-2s-async/broker-b-s.properties文件,配置示例如下:

#所属集群名字,名字一样的节点就在同一个集群内
brokerClusterName=rocketmq-cluster
#broker名字,名字一样的节点就是一组主从节点。
brokerName=broker-b
#brokerid,0就表示是Master,>0的都是表示 Slave
brokerId=1
#nameServer地址,分号分割
namesrvAddr=worker1:9876;worker2:9876;worker3:9876
#是否允许 Broker 自动创建Topic,建议线下开启,线上关闭
autoCreateTopicEnable=true
deleteWhen=04
fileReservedTime=120
#存储路径
storePathRootDir=/app/rocketmq/storeSlave
storePathCommitLog=/app/rocketmq/storeSlave/commitlog
storePathConsumeQueue=/app/rocketmq/storeSlave/consumequeue
storePathIndex=/app/rocketmq/storeSlave/index
storeCheckpoint=/app/rocketmq/storeSlave/checkpoint
abortFile=/app/rocketmq/storeSlave/abort
#Broker 的角色
brokerRole=SLAVE
flushDiskType=ASYNC_FLUSH
#Broker 对外服务的监听端口
listenPort=11011

​这样就完成了2主2从集群的配置。配置过程汇总有几个需要注意的配置项:

  • store开头的一系列配置:表示RocketMQ的存盘文件地址。在同一个机器上需要部署多个Broker服务时,不同服务的存储目录不能相同。
  • listenPort:表示Broker对外提供服务的端口。这个端口默认是10911。在同一个机器上部署多个Broker服务时,不同服务占用的端口也不能相同。
  • 如果你使用的是多网卡的服务器,比如阿里云上的云服务器,那么就需要在配置文件中增加配置一个brokerIP1属性,指向所在机器的外网网卡地址。

第三步:启动Broker服务
集群配置完成后,需要启动Broker服务。与之前启动broker服务稍有不同,启动时需要增加-c参数,指向我们修改的配置文件。
在worker2上启动broker-a的master服务和broker-b的slave服务:

cd /app/rocketmq/rocketmq-all-4.9.5-bin-release
nohup bin/mqbroker -c ./conf/2m-2s-async/broker-a.properties &
nohup bin/mqbroker -c ./conf/2m-2s-async/broker-b-s.properties &

​ 在worker3上启动broker-b的master服务和broker-a的slave服务:

cd /app/rocketmq/rocketmq-all-4.9.5-bin-release
nohup bin/mqbroker -c ./conf/2m-2s-async/broker-b.properties &
nohup bin/mqbroker -c ./conf/2m-2s-async/broker-a-s.properties &

第四步:检查集群服务状态
对于服务的启动状态,我们依然可以用之前介绍的jps指令以及nohup.out日志文件进行跟踪。不过,在RocketMQ的bin目录下,也提供了mqadmin指令,可以通过命令行的方式管理RocketMQ集群。
例如下面的指令可以查看集群broker集群状态。通过这个指令可以及时了解集群的运行状态。

[oper@worker1 bin]$ cd /app/rocketmq/rocketmq-all-4.9.5-bin-release/bin
[oper@worker1 bin]$ mqadmin clusterList
RocketMQLog:WARN No appenders could be found for logger (io.netty.util.internal.InternalThreadLocalMap).
RocketMQLog:WARN Please initialize the logger system properly.
#Cluster Name     #Broker Name            #BID  #Addr                  #Version                #InTPS(LOAD)       #OutTPS(LOAD) #PCWait(ms) #Hour #SPACE
rocketmq-cluster  broker-a                0     192.168.232.129:10911  V4_9_1                   0.00(0,0ms)         0.00(0,0ms)          0 3425.28 0.3594
rocketmq-cluster  broker-a                1     192.168.232.130:11011  V4_9_1                   0.00(0,0ms)         0.00(0,0ms)          0 3425.28 0.3607
rocketmq-cluster  broker-b                0     192.168.232.130:10911  V4_9_1                   0.00(0,0ms)         0.00(0,0ms)          0 3425.27 0.3607
rocketmq-cluster  broker-b                1     192.168.232.129:11011  V4_9_1                   0.00(0,0ms)         0.00(0,0ms)          0 3425.27 0.3594

注:执行这个指令需要在机器上配置了NAMESRV环境变量

​mqadmin指令还提供了非常丰富的管理功能。你可以尝试直接使用mqadmin指令,就会列出mqadmin支持的所有管理指令。如果对某一个指令不会使用,还可以使用mqadmin help 指令查看帮助。
​ 另外,之前搭建的dashboard也是集群服务状态的很好的工具。只需要在之前搭建Dashboard时创建的配置文件中增加指定nameserver地址即可。

rocketmq: 
  config: 
    namesrvAddrs: 
      - worker1:9876 
      - worker2:9876
      - worker3:9876

​ 启动完成后,在集群菜单页就可以看到集群的运行情况
【RocketMQ专题】快速实战及集群架构原理详解_第17张图片
在RocketMQ的这种主从架构的集群下,客户端发送的消息会分散保存到broker-a和broker-b两个服务上,然后每个服务都配有slave服务,可以备份对应master服务上的消息,这样就可以防止单点故障造成的消息丢失问题。

四、理解 RocketMQ的消息模型

首先:我们先来尝试往RocketMQ中发送一批消息。
​在上面的【RocketMQ快速实战】中我们提到,RocketMQ提供了一个测试脚本tools.sh,用于快速测试RocketMQ的客户端。

tools.sh org.apache.rocketmq.example.quickstart.Producer

​ 这里调用的Producer示例实际上是在RocketMQ安装目录下的lib/rocketmq-example-4.9.5.jar中包含的一个测试类。tools.sh脚本则是提供Producer类的运行环境。

​ Producer这个测试类,会往RocketMQ中发送一千条测试消息。发送消息后,我们可以在控制台看到很多如下的日志信息。

SendResult [sendStatus=SEND_OK, msgId=7F000001426E28A418FC6545DFD803E7, offsetMsgId=C0A8E88100002A9F0000000000B4F6E5, messageQueue=MessageQueue [topic=TopicTest, brokerName=broker-a, queueId=2], queueOffset=124]

​ 这是RocketMQ的Broker服务端给消息生产者的响应。这个响应信息代表的是Broker服务端已经正常接收并保存了消息生产者发送的消息。这里面提到了很多topic、messageQueue等概念,这些是什么意思呢?我们不妨先去RocketMQ的DashBoard控制台看一下RocketMQ的Broker是如何保存这些消息的。
​ 访问DashBoard上的“主题”菜单,可以看到多了一个名为TopicTest的主题。
【RocketMQ专题】快速实战及集群架构原理详解_第18张图片
这个TopicTest就是我们之前运行的Producer创建的主题。点击“状态”按钮,可以看到TopicTest上的消息分布。
【RocketMQ专题】快速实战及集群架构原理详解_第19张图片
​ 从这里可以看到,TopicTest这个话题下,分配了八个MessageQueue。这里的MessageQueue就是一个典型的具有FIFO(先进先出)特性的消息集合。这八个MessageQueue均匀的分布在了集群中的两个Broker服务上。每个MesasgeQueue都记录了一个最小位点和最大位点。这里的位点代表每个MessageQueue上存储的消息的索引,也称为offset(偏移量)。每一条新记录的消息,都按照当前最大位点往后分配一个新的位点。这个位点就记录了这一条消息的存储位置。
从Dashboard就能看到,每一个MessageQueue,当前都记录了125条消息。也就是说,我们之前使用Producer示例往RocketMQ中发送的一千条消息,就被均匀的分配到了这八个MessageQueue上。
​ 这是,再回头来看之前日志中打印的SendResult的信息。日志中的MessageQueue就代表这一条消息存在哪个队列上了。而queueOffset就表示这条消息记录在MessageQueue的哪个位置。
【RocketMQ专题】快速实战及集群架构原理详解_第20张图片
然后:我们尝试启动一个消费者来消费消息
我们同样可以使用tools.sh来启动一个消费者示例。

tools.sh org.apache.rocketmq.example.quickstart.Consumer

​ 这个Consumer同样是RocketMQ下的lib/rocketmq-example-4.9.5.jar中提供的消费者示例。Consumer启动完成后,我们可以在控制台看到很多类似这样的日志:

ConsumeMessageThread_3 Receive New Messages: [MessageExt [brokerName=broker-b, queueId=0, storeSize=194, queueOffset=95, sysFlag=0, bornTimestamp=1666252677571, bornHost=/192.168.232.128:38414, storeTimestamp=1666252678510, storeHost=/192.168.232.130:10911, msgId=C0A8E88200002A9F0000000000B4ADD2, commitLogOffset=11840978, bodyCRC=634652396, reconsumeTimes=0, preparedTransactionOffset=0, toString()=Message{topic='TopicTest', flag=0, properties={MIN_OFFSET=0, MAX_OFFSET=125, CONSUME_START_TIME=1666257428525, UNIQ_KEY=7F000001426E28A418FC6545DDC302F9, CLUSTER=rocketmq-cluster, TAGS=TagA}, body=[72, 101, 108, 108, 111, 32, 82, 111, 99, 107, 101, 116, 77, 81, 32, 55, 54, 49], transactionId='null'}]] 

​ 这里面也打印出了一些我们刚刚熟悉的brokerName,queueId,queueOffset这些属性。其中queueOffset属性就表示这一条消息在MessageQueue上的存储位点。通过记录每一个消息的Offset偏移量,RocketMQ就可以快速的定位到这一条消息具体的存储位置,继而正确读取到消息的内容。
接下来,我们还是可以到DashBoard上印证一下消息消费的情况。
在DashBoard的“主题”页面,选择对应主题后的“CONSUMER管理”功能,就能看到消费者的消费情况。
【RocketMQ专题】快速实战及集群架构原理详解_第21张图片
​ 从这里可以看到,刚才的Comsumer示例启动了一个叫做please_rename_unique_group_name_4的消费者组。然后这个消费者从八个队列中都消费了数据。后面的代理者位点记录的是当前MessageQueue上记录的最大消息偏移量。而消费者位点记录的是当前消费者组在MessageQueue上消费的最大消息偏移量。其中的差值就表示当前消费者组没有处理完的消息。
​ 并且,从这里还可以看出,RocketMQ记录消费者的消费进度时,都是以“订阅组”为单位的。我们也可以使用上一章节的示例,自己另外定义一个新的消费者组来消费TopicTest上的消息。这时,RocketMQ就会单独记录新消费者组的消费进度。而新的消费者组,也能消费到TopicTest下的所有消息。
接下来:我们就可以梳理出RocketMQ的消息记录方式
对之前的实验过程进行梳理,我们就能抽象出RocketMQ的消息模型。如下图所示:
【RocketMQ专题】快速实战及集群架构原理详解_第22张图片
​ 生产者和消费者都可以指定一个Topic发送消息或者拉取消息。而Topic是一个逻辑概念。Topic中的消息会分布在后面多个MessageQueue当中。这些MessageQueue会分布到一个或者多个broker中。
​ 在RocketMQ的这个消息模型当中,最为核心的就是Topic。对于客户端,Topic代表了一类有相同业务规则的消息。对于Broker,Topic则代表了系统中一系列存储消息的资源。所以,RocketMQ对于Topic是需要做严格管理的。如果任由客户端随意创建Topic,那么服务端的资源管理压力就会非常大。默认情况下,Topic都需要由管理员在RocketMQ的服务端手动进行创建,然后才能给客户端使用的。而我们之前在broker.conf中手动添加的autoCreateTopic=true,就是表示可以由客户端自行创建Topic。这种配置方式显然只适用于测试环境,在生产环境不建议打开这个配置项。如果需要创建 Topic,可以交由运维人员提前创建 Topic。
而对于业务来说,最为重要的就是消息Message了。生产者发送到某一个Topic下的消息,最终会保存在Topic下的某一个MessageQueue中。而消费者来消费消息时,RocketMQ会在Broker端给每个消费者组记录一个消息的消费位点Offset。通过Offset控制每个消费者组的消息处理进度。这样,每一条消息,在一个消费者组当中只被处理一次。

从逻辑层面来看,RocketMQ 的消息模型和Kafka的消息模型是很相似的。没错,早期 RocketMQ 就是借鉴Kafka设计出来的。但是,在后续的发展过程中,RocketMQ 在Kafka的基础上,做了非常大的调整。所以,对于RocketMQ,你也不妨回顾下Kafka,与Kafka对比着进行学习。
例如,在Kafka当中,如果Topic过多,会造成消息吞吐量下降。但是在RocketMQ中,对Topic的支持已经得到很大的加强。Topic过多几乎不会影响整体性能。RocketMQ是怎么设计的?另外,之前Kafka课程中也分析过,Leader选举的过程中,Kafka优先保证服务可用性,而一定程度上牺牲了消息的安全性,那么 RocketMQ 是怎么做的呢?保留这些问题,后续我们一一解决。

学习总结

感谢

感谢作者【morris131】大佬的文章【RocketMQ】RocketMQ快速入门

你可能感兴趣的:(tuling学院学习笔记,java-rocketmq,rocketmq,架构)