文本是一类序列数据,一篇文章可以看作是字符或单词的序列,本节将介绍文本数据的常见预处理步骤,预处理通常包括四个步骤:
一段自然语言文本可以看作是一个离散时间序列,给定一个长度为TT的词的序列w1,w2,…,wT,语言模型的目标就是评估该序列是否合理,即计算该序列的概率:
P(w1,w2,…,wT).
本节我们介绍基于统计的语言模型,主要是n元语法(n-gram)。在后续内容中,我们将会介绍基于神经网络的语言模型。
假设序列w1,w2,…,wT中的每个词是依次生成的,我们有
例如,一段含有4个词的文本序列的概率
P(w1,w2,w3,w4)=P(w1)P(w2∣w1)P(w3∣w1,w2)P(w4∣w1,w2,w3).
语言模型的参数就是词的概率以及给定前几个词情况下的条件概率。设训练数据集为一个大型文本语料库,如维基百科的所有条目,词的概率可以通过该词在训练数据集中的相对词频来计算,例如,w1的概率可以计算为:
其中n(w1)为语料库中以w1作为第一个词的文本的数量,n为语料库中文本的总数量。
类似的,给定w1情况下,w2的条件概率可以计算为:
其中n(w1,w2)为语料库中以w1作为第一个词,w2作为第二个词的文本的数量。
序列长度增加,计算和存储多个词共同出现的概率的复杂度会呈指数级增加。nn元语法通过马尔可夫假设简化模型,马尔科夫假设是指一个词的出现只与前面nn个词相关,即nn阶马尔可夫链(Markov chain of order nn),如果n=1,那么有。基于n−1阶马尔可夫链,我们可以将语言模型改写为
以上也叫n元语法(n-grams),它是基于n−1阶马尔可夫链的概率语言模型。例如,当n=2时,含有4个词的文本序列的概率就可以改写为:
当n分别为1、2和3时,我们将其分别称作一元语法(unigram)、二元语法(bigram)和三元语法(trigram)。例如,长度为4的序列w1,w2,w3,w4在一元语法、二元语法和三元语法中的概率分别为
当n较小时,n元语法往往并不准确。例如,在一元语法中,由三个词组成的句子“你走先”和“你先走”的概率是一样的。然而,当n较大时,n元语法需要计算并存储大量的词频和多词相邻频率。
思考:n元语法可能有哪些缺陷?
循环神经网络
理解:循环神经网络可以看成是一个过程,通过现在的发生的事情来预测未来发生的事,t时刻的输出由t-1时刻的隐藏层输出Ht-1和t时刻的输入Xt共同决定。(Xt,Ht-1) -----> Yt
常规递归网络从理论上应该可以顾及所有过去时刻的依赖,然而实际却无法按人们所想象工作。原因在于梯度消失(vanishinggradient)和梯度爆炸(exploding gradient)问题。
解决办法:裁剪梯度
循环神经网络中较容易出现梯度衰减或梯度爆炸,这会导致网络几乎无法训练。裁剪梯度(clip gradient)是一种应对梯度爆炸的方法。假设我们把所有模型参数的梯度拼接成一个向量 g,并设裁剪的阈值是θ。裁剪后的梯度的L2范数不超过θ。
def grad_clipping(params, theta, device):
norm = torch.tensor([0.0], device=device)
for param in params:
norm += (param.grad.data ** 2).sum()
norm = norm.sqrt().item()
if norm > theta:
for param in params:
param.grad.data *= (theta / norm)