Day53【动态规划】1143.最长公共子序列、1035.不相交的线、53.最大子序和

1143.最长公共子序列

力扣题目链接/文章讲解

视频讲解

本题最大的难点还是定义 dp 数组 

本题和718.最长重复子数组区别在于这里不要求是连续的了,但要有相对顺序

直接动态规划五部曲!

1、确定 dp 数组下标及值含义

dp[i][j]:取 text1 中下标 [0, i - 1] 的子字符串与 text2 中下标为 [0, j - 1] 的子字符串,dp[i][j] 的值表示这两个子字符串的最长公共子序列长度为 dp[i][j]

2、确定递推公式

主要就是两大情况: text1[i - 1] 与 text2[j - 1]相同,text1[i - 1] 与 text2[j - 1] 不相同

注意不要求连续

  • 如果 text1[i - 1] 与 text2[j - 1] 相同,那么找到了一个公共元素,所以 dp[i][j] = dp[i - 1][j - 1] + 1
  • 如果 text1[i - 1] 与 text2[j - 1] 不相同,则 text1[0, i - 1] 与 text2[0, j - 1] 的最长公共子序列长度一定为 text1[0, i - 2] 与 text2[0, j - 1] 的最长公共子序列长度或 text1[0, i - 1] 与 text2[0, j - 2] 的最长公共子序列长度之一,取最大的

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])

代码如下 

if (text1[i - 1] == text2[j - 1]) {
    dp[i][j] = dp[i - 1][j - 1] + 1;
} else {
    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}

3、dp 数组初始化

需要初始化第一列和第一行 dp 数组

先看看 dp[i][0] 应该是多少呢?

test1[0, i-1] 和空串的最长公共子序列自然是 0,所以 dp[i][0] = 0

同理 dp[0][j] 也是 0

其他下标都是随着递推公式逐步覆盖,初始为多少都可以

4、确定遍历顺序

从递推公式,可以看出,有三个方向可以推出dp[i][j],如图 

Day53【动态规划】1143.最长公共子序列、1035.不相交的线、53.最大子序和_第1张图片

那么为了在递推的过程中,这三个方向都是经过计算的数值,所以要从前向后,从上到下来遍历这个矩阵

5、打印 dp 数组验证

代码如下

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        vector > dp(text1.size() + 1, vector(text2.size() + 1, 0));

        for (int i = 1; i <= text1.size(); ++i) {
            for (int j = 1; j <= text2.size(); ++j) {
                if (text1[i - 1] == text2[j - 1])
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                else
                    dp[i][j] = max(dp[i][j - 1], dp[i - 1][j]);
            }
        }
        
        return dp[text1.size()][text2.size()];
    }
};

这里,定义 dp 数组为取 text1 中下标 [0, i - 1] 的子字符串与 text2 中下标为 [0, j - 1] 的子字符串,dp[i][j] 的值表示这两个子字符串的最长公共子序列长度为 dp[i][j]

这里的 i - 1 是为了方便初始化 

我们也可以如下定义: 定义 dp 数组为取 text1 中下标 [0, i] 的子字符串与 text2 中下标为 [0, j] 的子字符串,dp[i][j] 的值表示这两个子字符串的最长公共子序列长度为 dp[i][j]

这样我们的代码在初始化部分会复杂一点

代码及注释如下 

class Solution {
public:
    int longestCommonSubsequence(string text1, string text2) {
        // 1、定义dp数组下标及含义
        // dp[i][j]表示text1[0, i]与text2[0, j]这两个子串的最长公共子序列的长度
        vector > dp(text1.size(), vector(text2.size(), 1));

        // 2、确定递推公式:考虑text1[i]与text2[j]是否相同
        // 如果相同,则dp[i][j] = dp[i-1][j-1]+1,即text1[0,i-1]与text2[0, j-1]这两子串的最长公共子序列长度+1
        // 如果不相同,则dp[i][j]一定为text1[0, i-1]与text2[0, j]的最长公共子序列长度或text1[0, i]与text2[0, j-1]的最长公共子序列长度之一,取最大的
        
        // 3、dp数组初始化,需要初始化第一行和第一列
        for (int j = 0; j < text2.size(); ++j) {    // 初始化第一行
            // dp[0][j]表示text1[0]与text2[0, j]的最长公共子序列长度,如果text2[0, j]包含text1[0],则为1,否则为0
            if (text2[j] == text1[0])
                break;  // 如果遍历到满足条件的了,则当前包括后面的text2[0, j]一定包含text1[0]了,就为1
            dp[0][j] = 0;   // 否则说明当前串text2[0, j]一定不含text1[0]
        }

        for (int i = 0; i < text1.size(); ++i) {    // 初始化第一列
            if (text1[i] == text2[0])
                break;
            dp[i][0] = 0;
        }

        // 4、确定遍历顺序:从前向后从上向下遍历填充
        for (int i = 1; i < text1.size(); ++i)
            for (int j = 1; j < text2.size(); ++j)
                if (text1[i] == text2[j])
                    dp[i][j] = dp[i - 1][j - 1] + 1;
                else
                    dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
        
        // 5、打印dp数组验证

        return dp[text1.size() - 1][text2.size() - 1];
    }
};

1035.不相交的线

力扣题目链接/文章讲解

视频讲解

本题说是求绘制的最大连线数,其实就是求两个字符串的最长公共子序列的长度 

和上一道题一模一样

直接上代码

class Solution {
public:
    int maxUncrossedLines(vector& nums1, vector& nums2) {
        
        // dp[i][j]表示nums1[0, i]与nums2[0, j]这两个子数组的最长公共子序列的长度
        vector > dp(nums1.size(), vector(nums2.size(), 1));

        for (int j = 0; j < nums2.size(); ++j) {
            if (nums2[j] == nums1[0])   break;
            dp[0][j] = 0;
        }

        for (int i = 0; i < nums1.size(); ++i) {
            if (nums1[i] == nums2[0])   break;
            dp[i][0] = 0;
        }

        for (int i = 1; i < nums1.size(); ++i)
            for (int j = 1; j < nums2.size(); ++j) {
                if (nums1[i] == nums2[j])
                    dp[i][j] = dp[i-1][j-1] + 1;
                else
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
            }
        
        return dp[nums1.size()-1][nums2.size()-1];
    }
};

53.最大子数组和

力扣题目链接/文章讲解 

视频讲解 

本题可以用贪心算法,也可以用动态规划

1、确定 dp 数组下标及值含义

dp[i]:下标 i 表示以 nums[i] 为结尾的有最大和的连续子数组,值表示该子数组和

注意 nums[i] 一定是有着最大和的连续子数组中的最后一个元素 

2、确定递推公式

dp[i] 只有两个方向可以推出来:

  • dp[i - 1] + nums[i],即:nums[i] 加入当前以 nums[i-1] 为结尾的连续子序列和
  • nums[i],即:从头开始计算当前连续子序列和

一定是取最大的,所以dp[i] = max(dp[i - 1] + nums[i], nums[i])

3、dp 数组初始化

从递推公式可以看出来 dp[i] 是依赖于 dp[i - 1] 的状态,dp[0] 就是递推公式的基础 

根据 dp 下标及值含义:dp[0] = nums[0]

4、确定遍历顺序

递推公式中 dp[i] 依赖于 dp[i - 1] 的状态,需要从前向后遍历,保证被依赖的 dp 值是已被更新后的正确值

5、打印 dp 数组验证

代码如下

class Solution {
public:
    int maxSubArray(vector& nums) {
        // 确定dp数组下标及值含义:i表示以nums[i]为结尾的有最大和的子数组,dp[i]的值表示该最大子数组和
        vector dp(nums.size());

        // 递推公式:要么将nums[i]加入具有最大和的子数组,要么从nums[i]重新开始统计具有最大和的子数组

        // 初始化dp[0]
        dp[0] = nums[0];

        // 从左向右遍历填充dp
        for (int i = 1; i < nums.size(); ++i)
            dp[i] = max(dp[i - 1] + nums[i], nums[i]);

        return *max_element(dp.begin(), dp.end());
    }
};

回顾一下 dp[i] 的定义:下标 i 表示以 nums[i] 为结尾的有最大和的连续子数组

那么我们要找有最大和的子数组,就应该找每一个 nums[i] 为终点的有最大和的子数组


回顾总结 

操作两个序列需要二维 dp

还是定义 dp 数组是关键

 

你可能感兴趣的:(代码随想录,动态规划,算法,leetcode,c++,数据结构)