- 小白也能懂的 Python 入门指南(1)——Python 的前世今生
荆州克莱
面试题汇总与解析springcloudspringbootspring技术css3
Lifeisshort.YouneedPython.——BruceEckel上边这句话是Python社区的名言,翻译过来就是“人生苦短,我用Python”,由此可见,Python在很多人心中已成为最中意的编程语言。在人工智能、机器学习日趋火热的时代,Python又赶上了一波AI的热潮,即使你没系统的学习过它,相信你也一定听说过吧,如果你也对Python产生了浓厚的兴趣,跟我一起来了解下它的前世今生
- AI大模型
荆州克莱
面试题汇总与解析技术css3springcloudspringbootspring
系列简书文章目录https://www.jianshu.com/p/d47d5cdc8a3e本篇目录AI大模型什么是AI大模型AI大模型,通常指的是在人工智能领域中,特别是机器学习和深度学习范畴内,具有巨大参数量和复杂结构的模型。这些模型通过使用大规模数据集和先进的计算硬件进行训练,能够学习到数据中的复杂模式和特征,从而在多种任务上展现出卓越的性能。特点包括:参数量大:AI大模型的参数数量往往达到
- 迎接2025年:人工智能引领的新时代变革
海森大数据
人工智能
随着科技的飞速发展,我们正站在新时代的门槛上,准备迎接由人工智能(AI)驱动的深刻变革。美国《福布斯》杂志的一篇文章《人人都必须为2025年的十大人工智能趋势做好准备》为我们描绘了未来几年AI领域的壮丽图景。这些趋势不仅预示着技术的革新,更反映了我们如何适应和塑造这个由AI主导的新世界。一、到2025年,人工智能将不再是威胁人类工作的“冷面杀手”,而是成为增强人类能力的得力助手。通过与AI的紧密合
- 北大新模型FAN:新型神经网络架构,填补周期性特征建模空白
海森大数据
神经网络人工智能深度学习
在科学研究和技术发展的浪潮中,周期性现象作为自然界和人类社会的普遍规律,一直备受关注。从天文学中的行星运动到经济学中的商业周期,周期性无处不在,深刻影响着我们的生活和思考方式。然而,传统的神经网络模型,如多层感知器(MLP)和Transformer,在周期性建模方面却存在明显不足。面对这一挑战,北京大学李戈教授的团队提出了一种创新性的网络架构——FourierAnalysisNetworks(FA
- 深度学习:从基础到实践(上、下册)(安德鲁·格拉斯纳)
fyjgfyjfg
深度学习人工智能
(pdf):python33+(0m深度学习概述:深度学习是机器学习的一个分支,它试图通过使用深层神经网络来模拟人脑的学习过程。随机性与基础统计学:在深度学习中,随机性起着重要作用,了解基础统计学有助于更好地理解深度学习中的随机过程和不确定性。训练与测试:深度学习模型的训练过程包括使用训练数据来优化模型参数,而测试过程则使用测试数据来评估模型的性能。过拟合与欠拟合:过拟合是指模型在训练数据上表现过
- AI代理的分类体系与发展路径:从概念重构到基础设施升级
XianxinMao
人工智能
目前AI代理的定义过于宽泛,需要更详细的分类以促进研究和应用的发展当前定义的宽泛性AI代理(AIAgents)作为人工智能领域的重要概念,涵盖了从简单的自动化工具到复杂的自主决策系统的广泛范围。然而,这种宽泛的定义带来了诸多问题:概念模糊:不同研究者和开发者对AI代理的理解存在差异,缺乏统一标准,导致交流和合作困难。研究方向不明确:宽泛的定义使得研究人员难以聚焦具体问题,影响研究的深度和效率。应用
- # 边缘计算的未来:推动实时智能化应用的关键技术 随着物联网(IoT)、5G和人工智能(AI)的发展,边缘计算正在成为推动智能化应用的重要技术之一。通过在设备本地或网络边缘进行数据处理,边缘计算能够
小zzzzzzzz
人工智能边缘计算物联网
边缘计算的未来:推动实时智能化应用的关键技术随着物联网(IoT)、5G和人工智能(AI)的发展,边缘计算正在成为推动智能化应用的重要技术之一。通过在设备本地或网络边缘进行数据处理,边缘计算能够减少延迟、降低带宽消耗,并在需要快速决策的场景中提供实时响应能力。与云计算相比,边缘计算能够在网络的“边缘”进行更多的智能处理,从而优化整体系统的效率和可靠性。本文将探讨边缘计算的核心概念、应用场景、未来发展
- 智能视界·大模型驱动视频矩阵管理系统
大霸王龙
python音视频矩阵服务器python大数据大模型
开头先配两张ER图一张不带字段,一张带字段,剩下的内容按需拿取1.产品介绍产品名称:智能视界·大模型驱动视频矩阵管理系统主要功能:智能视频分析与识别功能介绍:该系统集成先进的人工智能大模型,能够实时对视频流进行深度分析,自动识别场景中的人物、车辆、异常行为(如入侵、徘徊、遗留物等)及特定事件(如火灾、烟雾等)。通过精准识别与分类,有效减少误报率,提升安全监控效率。使用方式:用户可通过直观的操作界面
- DeepSeek Artifacts:前端开发的新利器
人工智能
DeepSeekArtifacts:前端开发的新利器人工智能领域创新不断,DeepSeekV3便是其中备受瞩目的工具之一。这款轻量级模型凭借在大语言模型(LLM)排行榜上的优异表现,以及亲民的价格和卓越的性能,在人工智能社区中广受关注。然而,它的姊妹工具DeepSeekArtifacts却因截然不同的缘由引发了热议。在本文中,我们将深入探究DeepSeekArtifacts。这是HuggingFa
- 《量子计算对人工智能发展的深远影响》
cc++人工智能深度学习
在科技发展的浪潮中,量子计算与人工智能无疑是两颗璀璨的明星,二者的融合正引领着一场深刻的科技变革.量子计算的独特之处在于其利用量子比特的叠加和纠缠特性,能够实现并行计算,从而在处理复杂问题时展现出超越传统计算的巨大潜力.这种强大的计算能力为人工智能的发展带来了诸多积极影响。加速机器学习训练机器学习,尤其是深度学习,通常需要处理海量数据和复杂的模型训练,耗时极长。量子计算的并行性可使训练过程大幅加速
- 2024年诺贝尔奖揭晓:机遇与挑战并存
人工智能aigcopenai
ChatGPT竟然也不相信诺贝尔奖结果!2024年诺贝尔奖对科研领域来说是个重要的时刻。诺贝尔奖可谓是科学界的“奥斯卡”,每年的获奖者都会引起广泛关注。今年,瑞典皇家科学院公布,约翰·J·霍普菲尔德和杰弗里·E·辛顿荣获诺贝尔物理学奖,这个消息让不少人感到惊讶。诺贝尔物理学奖:意外的突破一次颁奖的震撼诺贝尔奖的官方网站指出,霍普菲尔德和辛顿因其在人工神经网络和机器学习领域的基础性研究而获奖。他们的
- 每天五分钟深度学习框架pytorch:快速搭建VGG网络的基础模块VGG块
每天五分钟玩转人工智能
深度学习框架pytorch深度学习pytorch网络卷积神经网络卷积层人工智能
本文重点前面我们介绍了VGG神经网络,我们知道VGG是由许多的VGG块构成,那么本文我们将使用pytorch搭建VGG块代码实现:importtorchfromtorchimportnndefvgg_block(num_convs,in_channels,out_channels):net=[nn.Conv2d(in_channels,out_channels,kernel_size=3,padd
- 探秘6-DoF GraspNet:面向对象操纵的变分抓取生成
庞锦宇
探秘6-DoFGraspNet:面向对象操纵的变分抓取生成项目地址:https://gitcode.com/gh_mirrors/py/pytorch_6dof-graspnet在人工智能和机器人领域,我们正逐步接近让机器模拟人类的手部动作,实现精准的六自由度(6-DoF)物体抓取。6-DoFGraspNet是一项革新性的技术,现在,这个强大的工具已有了PyTorch实现。本文将详细介绍这一开源项
- 微软:全球每天网络攻击超6亿次
FreeBuf-
资讯microsoft
《2024年微软数字防御报告》揭示了一个复杂的全球网络安全格局,每天发生超过6亿次网络攻击。报告强调了勒索软件、网络钓鱼和身份泄露事件的增加,以及网络犯罪团伙和国家行为者之间的合作。它强调了人工智能在攻击和防御中的重要作用,敦促组织采取主动的、多层次的策略来应对这些不断演变的威胁。核心观点每天有6亿次网络攻击针对微软客户。勒索软件攻击比去年增加了2.75倍。技术诈骗激增400%,每天发生超过10万
- AI如何帮助电商企业进行数据分析
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
电商数据分析,人工智能,机器学习,深度学习,推荐系统,预测模型,客户画像1.背景介绍在当今数字化时代,电商行业蓬勃发展,数据成为企业最重要的资产。电商企业每天都会产生海量的数据,包括用户行为、商品信息、交易记录等。如何有效地分析这些数据,挖掘其中的价值,对于电商企业的运营、营销和发展至关重要。传统的数据分析方法往往难以应对海量数据的处理和复杂分析需求,而人工智能(AI)技术的出现为电商数据分析带来
- 大规模语言模型从理论到实践 大语言模型预训练数据
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大规模语言模型从理论到实践:大语言模型预训练数据关键词:大规模语言模型、预训练数据、数据集选择、数据清洗、数据增强、数据集评估、数据集扩展1.背景介绍1.1问题的由来随着深度学习和大规模神经网络的发展,大型语言模型(LargeLanguageModels,LLMs)成为了自然语言处理(NLP)领域的一项突破性技术。LLMs能够生成流畅且具有上下文关联性的文本,这得益于它们在海量文本数据上的预训练。
- 卷积神经网络(CNN):深度学习中的核心模型
任义礼智信
深度学习cnn人工智能
引言卷积神经网络(ConvolutionalNeuralNetworks,CNNs)是深度学习领域的一种重要模型,广泛应用于图像处理、计算机视觉、自然语言处理等多个领域。CNN凭借其卓越的特征提取能力和参数共享机制,已成为计算机视觉任务中最主流的算法之一。本文将深入探讨CNN的基本原理、结构组件、应用场景及其发展方向。CNN的基本原理CNN是一种特殊的前馈神经网络(FeedforwardNeura
- 【机器学习:十五、神经网络的编译和训练】
KeyPan
机器学习机器学习神经网络人工智能深度学习pytorchubuntulinux
1.TensorFlow实现代码TensorFlow是深度学习中最为广泛使用的框架之一,提供了灵活的接口来构建、编译和训练神经网络。以下是实现神经网络的一个完整代码示例,以“手写数字识别”为例:importtensorflowastffromtensorflow.kerasimportlayers,models#加载MNIST数据集(x_train,y_train),(x_test,y_test)
- 【机器学习:十六、其他的激活函数】
KeyPan
机器学习机器学习人工智能算法服务器运维ubuntu
1.Sigmoid激活函数的替代方案Sigmoid激活函数在神经网络中曾广泛使用,其数学公式为:σ(x)=11+e−x\sigma(x)=\frac{1}{1+e^{-x}}σ(x)=1+e−x1输出范围为(0,1),适合二分类问题。但随着深度学习的发展,Sigmoid函数逐渐被替代,主要原因包括:梯度消失问题:当输入绝对值较大时,梯度趋近于零,导致权重更新困难。非零中心问题:输出值始终为正,可能
- 深度学习图像算法中的网络架构:Backbone、Neck 和 Head 详解
肥猪猪爸
#深度学习深度学习算法人工智能数据结构神经网络计算机视觉机器学习
深度学习已经成为图像识别领域的核心技术,特别是在目标检测、图像分割等任务中,深度神经网络的应用取得了显著进展。在这些任务的网络架构中,通常可以分为三个主要部分:Backbone、Neck和Head。这些部分在整个网络中扮演着至关重要的角色,它们各自处理不同的任务,从特征提取到最终的预测输出,形成了一个完整的图像处理流程。本文将详细介绍这三部分的作用以及它们在目标检测和图像分割中的应用,帮助大家更好
- 当下是否入行AI ? 一场关于未来的赌注与机遇
dami_king
随笔人工智能
当下是否入行AI:一场关于未来的赌注与机遇在科技的浪潮中,人工智能(AI)无疑是最为汹涌的一波。它不仅改变了我们与机器互动的方式,还重塑了各行各业的面貌。面对这样的变革,许多人站在十字路口犹豫不决——现在进入AI领域还来得及吗?这个问题的答案,并非简单的“是”或“否”。今天,让我们一起深入探讨这个话题,看看对于想要投身AI的人来说,当下是不是一个好的时机。AI行业的现状与发展2024年,AI已经从
- 大数据新视界 -- 大数据大厂之 Impala 性能优化:融合人工智能预测的资源预分配秘籍(上)(29 / 30)
青云交
大数据新视界#Impala之道大数据Impala人工智能预测资源预分配数据收集模型构建查询性能优化
亲爱的朋友们,热烈欢迎你们来到青云交的博客!能与你们在此邂逅,我满心欢喜,深感无比荣幸。在这个瞬息万变的时代,我们每个人都在苦苦追寻一处能让心灵安然栖息的港湾。而我的博客,正是这样一个温暖美好的所在。在这里,你们不仅能够收获既富有趣味又极为实用的内容知识,还可以毫无拘束地畅所欲言,尽情分享自己独特的见解。我真诚地期待着你们的到来,愿我们能在这片小小的天地里共同成长,共同进步。本博客的精华专栏:大数
- AI代码生成器赋能软件原型快速构建:吴恩达的最佳实践指南
前端
快速构建软件原型对于验证想法、迭代产品至关重要。而随着人工智能技术的飞速发展,AI代码生成器等AI辅助编程工具的出现,为开发者提供了前所未有的效率提升。本文将结合吴恩达教授的观点,探讨如何利用AI工具,高效构建软件原型。吴恩达教授强调选择合适的技术栈并有效利用AI工具是关键,这将帮助开发者在短时间内完成原型开发,快速验证其想法。选择并精通“有主见”的技术栈:效率为王吴恩达教授推荐的技术栈——Pyt
- 从RNN到Transformer:生成式AI技术演变与未来展望
非著名架构师
人工智能rnntransformer
生成式人工智能(GenerativeAI)近年来取得了令人瞩目的进展,其背后的核心技术是自回归模型的不断演进。从传统的递归神经网络(RNN)到革命性的Transformer架构,本文将全面剖析这一技术发展历程。一、RNN:生成式模型的起点1.RNN的基本原理递归神经网络(RecurrentNeuralNetwork,RNN)是一种专为处理序列数据设计的神经网络架构。其核心思想是通过循环连接的隐藏状
- 开源多模态推理模型QVQ:视觉推理能力的突破与未来展望
前端
近年来,AI代码生成器等人工智能技术飞速发展,多模态推理模型作为其中一个重要分支,正展现出越来越强大的能力。它能够理解和处理多种类型的数据,例如图像、文本、音频等,并进行复杂的推理和决策。阿里云通义千问团队近日发布的QVQ-72B-Preview模型,就是一个极具代表性的例子。该模型开源且在视觉推理方面表现突出,为多模态模型的发展树立了新的里程碑。QVQ模型的核心能力与突破QVQ-72B-Prev
- 遗传算法与深度学习实战(25)——使用Keras构建卷积神经网络
盼小辉丶
遗传算法与深度学习实战深度学习kerascnn
遗传算法与深度学习实战(25)——使用Keras构建卷积神经网络0.前言1.卷积神经网络基本概念1.1卷积1.2步幅1.3填充1.4激活函数1.5池化2.使用Keras构建卷积神经网络3.CNN层的问题4.模型泛化小结系列链接0.前言卷积神经网络(ConvolutionalNeuralNetwork,CNN)的提出是为了解决传统神经网络的缺陷。即使对象位于图片中的不同位置或其在图像中具有不同占比,
- Python网络爬虫入门教程:从抓取数据到应用实现
冷夜雨.
python
引言在大数据时代,信息就是力量。各种网站每天产生着海量的数据,这些数据中蕴藏着巨大的商业价值和研究价值。如何快速、自动化地从互联网上获取这些信息,成为了数据科学、人工智能、市场分析等领域中的一个重要课题。Python,作为一门易于学习且功能强大的编程语言,其丰富的库和工具使得构建网络爬虫变得非常简单。网络爬虫(WebScraper)是一种自动化程序,用来从网页中提取信息。无论是用于数据分析、竞争对
- 编程语言大揭秘:各显神通的编程世界
冷夜雨.
pythonjavac++c#javascript
在当今数字化的时代,编程语言犹如一把把神奇的钥匙,打开了通往不同技术领域的大门。从网页开发到人工智能,从数据分析到游戏制作,每一种编程语言都有其独特的优势与适用场景。今天,就让我们一同深入探索几种主流编程语言的奥秘,看看在什么情况下它们能发挥最大的威力。Python:万能胶水,快速开发的利器Python以其简洁、易读的语法著称,仿佛是用自然语言编写代码一般,新手程序员也能快速上手。它拥有庞大且丰富
- 遗传算法与深度学习实战(26)——编码卷积神经网络架构
盼小辉丶
遗传算法与深度学习实战深度学习cnn遗传算法
遗传算法与深度学习实战(26)——编码卷积神经网络架构0.前言1.EvoCNN原理1.1工作原理1.2基因编码2.编码卷积神经网络架构小结系列链接0.前言我们已经学习了如何构建卷积神经网络(ConvolutionalNeuralNetwork,CNN),在本节中,我们将了解如何将CNN模型的网络架构编码为基因,这是将基因序列进化在为给定数据集上训练最佳模型的先决条件。1.EvoCNN原理进化卷积神
- 《C++ 赋能强化学习:Q - learning 算法的实现之路》
c++人工智能深度学习
在当今科技飞速发展的时代,人工智能无疑是最热门的领域之一,而强化学习作为其中的重要分支,正逐渐改变着我们解决复杂问题的方式。Q-learning算法作为强化学习中的经典算法,在众多领域如游戏、机器人控制、资源管理等有着广泛的应用前景。本文将深入探讨如何用C++实现强化学习中的Q-learning算法,带您领略C++在人工智能领域的强大魅力。一、强化学习与Q-learning算法概述强化学习是一种通
- java类加载顺序
3213213333332132
java
package com.demo;
/**
* @Description 类加载顺序
* @author FuJianyong
* 2015-2-6上午11:21:37
*/
public class ClassLoaderSequence {
String s1 = "成员属性";
static String s2 = "
- Hibernate与mybitas的比较
BlueSkator
sqlHibernate框架ibatisorm
第一章 Hibernate与MyBatis
Hibernate 是当前最流行的O/R mapping框架,它出身于sf.net,现在已经成为Jboss的一部分。 Mybatis 是另外一种优秀的O/R mapping框架。目前属于apache的一个子项目。
MyBatis 参考资料官网:http:
- php多维数组排序以及实际工作中的应用
dcj3sjt126com
PHPusortuasort
自定义排序函数返回false或负数意味着第一个参数应该排在第二个参数的前面, 正数或true反之, 0相等usort不保存键名uasort 键名会保存下来uksort 排序是对键名进行的
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8&q
- DOM改变字体大小
周华华
前端
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- c3p0的配置
g21121
c3p0
c3p0是一个开源的JDBC连接池,它实现了数据源和JNDI绑定,支持JDBC3规范和JDBC2的标准扩展。c3p0的下载地址是:http://sourceforge.net/projects/c3p0/这里可以下载到c3p0最新版本。
以在spring中配置dataSource为例:
<!-- spring加载资源文件 -->
<bean name="prope
- Java获取工程路径的几种方法
510888780
java
第一种:
File f = new File(this.getClass().getResource("/").getPath());
System.out.println(f);
结果:
C:\Documents%20and%20Settings\Administrator\workspace\projectName\bin
获取当前类的所在工程路径;
如果不加“
- 在类Unix系统下实现SSH免密码登录服务器
Harry642
免密ssh
1.客户机
(1)执行ssh-keygen -t rsa -C "
[email protected]"生成公钥,xxx为自定义大email地址
(2)执行scp ~/.ssh/id_rsa.pub root@xxxxxxxxx:/tmp将公钥拷贝到服务器上,xxx为服务器地址
(3)执行cat
- Java新手入门的30个基本概念一
aijuans
javajava 入门新手
在我们学习Java的过程中,掌握其中的基本概念对我们的学习无论是J2SE,J2EE,J2ME都是很重要的,J2SE是Java的基础,所以有必要对其中的基本概念做以归纳,以便大家在以后的学习过程中更好的理解java的精髓,在此我总结了30条基本的概念。 Java概述: 目前Java主要应用于中间件的开发(middleware)---处理客户机于服务器之间的通信技术,早期的实践证明,Java不适合
- Memcached for windows 简单介绍
antlove
javaWebwindowscachememcached
1. 安装memcached server
a. 下载memcached-1.2.6-win32-bin.zip
b. 解压缩,dos 窗口切换到 memcached.exe所在目录,运行memcached.exe -d install
c.启动memcached Server,直接在dos窗口键入 net start "memcached Server&quo
- 数据库对象的视图和索引
百合不是茶
索引oeacle数据库视图
视图
视图是从一个表或视图导出的表,也可以是从多个表或视图导出的表。视图是一个虚表,数据库不对视图所对应的数据进行实际存储,只存储视图的定义,对视图的数据进行操作时,只能将字段定义为视图,不能将具体的数据定义为视图
为什么oracle需要视图;
&
- Mockito(一) --入门篇
bijian1013
持续集成mockito单元测试
Mockito是一个针对Java的mocking框架,它与EasyMock和jMock很相似,但是通过在执行后校验什么已经被调用,它消除了对期望 行为(expectations)的需要。其它的mocking库需要你在执行前记录期望行为(expectations),而这导致了丑陋的初始化代码。
&nb
- 精通Oracle10编程SQL(5)SQL函数
bijian1013
oracle数据库plsql
/*
* SQL函数
*/
--数字函数
--ABS(n):返回数字n的绝对值
declare
v_abs number(6,2);
begin
v_abs:=abs(&no);
dbms_output.put_line('绝对值:'||v_abs);
end;
--ACOS(n):返回数字n的反余弦值,输入值的范围是-1~1,输出值的单位为弧度
- 【Log4j一】Log4j总体介绍
bit1129
log4j
Log4j组件:Logger、Appender、Layout
Log4j核心包含三个组件:logger、appender和layout。这三个组件协作提供日志功能:
日志的输出目标
日志的输出格式
日志的输出级别(是否抑制日志的输出)
logger继承特性
A logger is said to be an ancestor of anothe
- Java IO笔记
白糖_
java
public static void main(String[] args) throws IOException {
//输入流
InputStream in = Test.class.getResourceAsStream("/test");
InputStreamReader isr = new InputStreamReader(in);
Bu
- Docker 监控
ronin47
docker监控
目前项目内部署了docker,于是涉及到关于监控的事情,参考一些经典实例以及一些自己的想法,总结一下思路。 1、关于监控的内容 监控宿主机本身
监控宿主机本身还是比较简单的,同其他服务器监控类似,对cpu、network、io、disk等做通用的检查,这里不再细说。
额外的,因为是docker的
- java-顺时针打印图形
bylijinnan
java
一个画图程序 要求打印出:
1.int i=5;
2.1 2 3 4 5
3.16 17 18 19 6
4.15 24 25 20 7
5.14 23 22 21 8
6.13 12 11 10 9
7.
8.int i=6
9.1 2 3 4 5 6
10.20 21 22 23 24 7
11.19
- 关于iReport汉化版强制使用英文的配置方法
Kai_Ge
iReport汉化英文版
对于那些具有强迫症的工程师来说,软件汉化固然好用,但是汉化不完整却极为头疼,本方法针对iReport汉化不完整的情况,强制使用英文版,方法如下:
在 iReport 安装路径下的 etc/ireport.conf 里增加红色部分启动参数,即可变为英文版。
# ${HOME} will be replaced by user home directory accordin
- [并行计算]论宇宙的可计算性
comsci
并行计算
现在我们知道,一个涡旋系统具有并行计算能力.按照自然运动理论,这个系统也同时具有存储能力,同时具备计算和存储能力的系统,在某种条件下一般都会产生意识......
那么,这种概念让我们推论出一个结论
&nb
- 用OpenGL实现无限循环的coverflow
dai_lm
androidcoverflow
网上找了很久,都是用Gallery实现的,效果不是很满意,结果发现这个用OpenGL实现的,稍微修改了一下源码,实现了无限循环功能
源码地址:
https://github.com/jackfengji/glcoverflow
public class CoverFlowOpenGL extends GLSurfaceView implements
GLSurfaceV
- JAVA数据计算的几个解决方案1
datamachine
javaHibernate计算
老大丢过来的软件跑了10天,摸到点门道,正好跟以前攒的私房有关联,整理存档。
-----------------------------华丽的分割线-------------------------------------
数据计算层是指介于数据存储和应用程序之间,负责计算数据存储层的数据,并将计算结果返回应用程序的层次。J
&nbs
- 简单的用户授权系统,利用给user表添加一个字段标识管理员的方式
dcj3sjt126com
yii
怎么创建一个简单的(非 RBAC)用户授权系统
通过查看论坛,我发现这是一个常见的问题,所以我决定写这篇文章。
本文只包括授权系统.假设你已经知道怎么创建身份验证系统(登录)。 数据库
首先在 user 表创建一个新的字段(integer 类型),字段名 'accessLevel',它定义了用户的访问权限 扩展 CWebUser 类
在配置文件(一般为 protecte
- 未选之路
dcj3sjt126com
诗
作者:罗伯特*费罗斯特
黄色的树林里分出两条路,
可惜我不能同时去涉足,
我在那路口久久伫立,
我向着一条路极目望去,
直到它消失在丛林深处.
但我却选了另外一条路,
它荒草萋萋,十分幽寂;
显得更诱人,更美丽,
虽然在这两条小路上,
都很少留下旅人的足迹.
那天清晨落叶满地,
两条路都未见脚印痕迹.
呵,留下一条路等改日再
- Java处理15位身份证变18位
蕃薯耀
18位身份证变15位15位身份证变18位身份证转换
15位身份证变18位,18位身份证变15位
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 201
- SpringMVC4零配置--应用上下文配置【AppConfig】
hanqunfeng
springmvc4
从spring3.0开始,Spring将JavaConfig整合到核心模块,普通的POJO只需要标注@Configuration注解,就可以成为spring配置类,并通过在方法上标注@Bean注解的方式注入bean。
Xml配置和Java类配置对比如下:
applicationContext-AppConfig.xml
<!-- 激活自动代理功能 参看:
- Android中webview跟JAVASCRIPT中的交互
jackyrong
JavaScripthtmlandroid脚本
在android的应用程序中,可以直接调用webview中的javascript代码,而webview中的javascript代码,也可以去调用ANDROID应用程序(也就是JAVA部分的代码).下面举例说明之:
1 JAVASCRIPT脚本调用android程序
要在webview中,调用addJavascriptInterface(OBJ,int
- 8个最佳Web开发资源推荐
lampcy
编程Web程序员
Web开发对程序员来说是一项较为复杂的工作,程序员需要快速地满足用户需求。如今很多的在线资源可以给程序员提供帮助,比如指导手册、在线课程和一些参考资料,而且这些资源基本都是免费和适合初学者的。无论你是需要选择一门新的编程语言,或是了解最新的标准,还是需要从其他地方找到一些灵感,我们这里为你整理了一些很好的Web开发资源,帮助你更成功地进行Web开发。
这里列出10个最佳Web开发资源,它们都是受
- 架构师之面试------jdk的hashMap实现
nannan408
HashMap
1.前言。
如题。
2.详述。
(1)hashMap算法就是数组链表。数组存放的元素是键值对。jdk通过移位算法(其实也就是简单的加乘算法),如下代码来生成数组下标(生成后indexFor一下就成下标了)。
static int hash(int h)
{
h ^= (h >>> 20) ^ (h >>>
- html禁止清除input文本输入缓存
Rainbow702
html缓存input输入框change
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。
如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off";
<input type="text" autocomplete="off" n
- POJO和JavaBean的区别和联系
tjmljw
POJOjava beans
POJO 和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Pure Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比 POJO复杂很多, Java Bean 是可复用的组件,对 Java Bean 并没有严格的规
- java中单例的五种写法
liuxiaoling
java单例
/**
* 单例模式的五种写法:
* 1、懒汉
* 2、恶汉
* 3、静态内部类
* 4、枚举
* 5、双重校验锁
*/
/**
* 五、 双重校验锁,在当前的内存模型中无效
*/
class LockSingleton
{
private volatile static LockSingleton singleton;
pri