- hping3工具介绍及使用方法
璃靡
网络安全测试工具安全
文章目录hping3的特点hping3的常见功能1.发送ICMP请求(类似ping)2.TCPSYN扫描3.SYN洪水攻击4.TCPACK扫描5.UDP洪水攻击6.模拟IP欺骗7.自定义数据包8.ICMP路由追踪9.Ping洪水攻击总结hping3是一个强大的命令行网络工具,主要用于发送自定义的TCP/IP数据包,进行网络测试、分析以及漏洞扫描等。它可以像ping命令一样发送ICMP请求,但它提供
- Spring Boot 示例项目:从零开始构建 Web 应用
梦落青云
JAVAspringbootjava
一、项目概述本文档将指导您通过一个示例项目,了解如何使用SpringBoot框架构建一个简单的Web应用程序。该项目涵盖了从数据模型定义到控制器、服务层以及数据访问层的完整开发流程,帮助您快速掌握SpringBoot的基本使用方法。二、项目结构1.项目模块本示例项目分为以下几个主要模块:数据模型模块:负责定义与数据库表对应的实体类,使用JPA注解进行映射。控制器模块:处理客户端的HTTP请求,调用
- JavaScript设计模式 -- 适配器模式
鎈卟誃筅甡
javascript设计模式适配器模式
在软件开发中,经常会遇到这样的情况:现有的类或第三方库提供的接口与系统中期望的接口不匹配。如果直接修改已有代码风险较大或者不可行,这时适配器模式(AdapterPattern)就能派上用场。适配器模式通过创建一个包装类,将原有接口转换为客户所期望的接口,从而使原本不兼容的类能够协同工作。本文将从基本概念入手,详细介绍适配器模式的实现方式及其在多个场景下的应用示例,并探讨其优缺点和使用建议。适配器模
- 联想E470 双GPU笔记本部署私有AI模型方案
月光技术杂谈
大模型初探人工智能ChatGLM3联想E470Qwen-7BPhi-3-mini
背景:手上有一台联想E470的闲置笔记本,配置如下:(IntelHD620核显+NVIDIA920MX独显,i5-7200UCPU),想用它来部署并学习AI模型。考虑到电脑的性能限制,打算采用「量化模型+知识蒸馏」的低成本部署方案。一、硬件适配优化方案显存限制突破使用4-bit量化技术压缩模型,例如加载ChatGLM3-6B的INT4版本,显存需求可降至6GB310启用CPU-GPU混合推理(通过
- javascript 常见设计模式
smiley121
javascript设计模式
什么是设计模式?在软件开发中,设计模式是解决特定问题的经验总结和可复用的解决方案。设计模式可以提高代码的复用性、可维护性和可读性,是提高开发效率的重要手段。单例模式1.概念单例模式(SingletonPattern),保证一个类只有一个实例,并提供一个访问它的全局访问点。也就是说,第二次使用同一个类创建新对象的时候,应该得到与第一次创建的对象完全相同的对象。2.代码实现classSingleton
- LLaMA系列大模型调研与整理-llama-alpaca-lora
AI大模型-大飞
llamaAI大模型AI职场和发展人工智能
文章目录LLaMA大模型及其衍生模型1.LLaMA2.stanford_alpaca3.ChatDoctor4.alpaca-lora5.Chinese-LLaMA-Alpaca6.BELLE大模型综述ASurveyofLargeLanguageModels关键词:大模型,LLaMA,Alpaca,Lora,Belle,模型训练,模型微调,指令微调最近尝试在领域数据进行生成式大模型的再训练和微调,
- 在conda虚拟环境中安装jupyter lab-----deepseek问答记录
溯源006
deepseek回答记录condajupyteride
在Conda虚拟环境中安装JupyterLab的步骤如下:1.创建并激活Conda虚拟环境如果你还没有创建虚拟环境,可以使用以下命令创建一个新的虚拟环境并激活它:condacreate-nmyenvpython=3.x#将`myenv`替换为你的环境名称,`3.x`替换为所需的Python版本condaactivatemyenv2.安装JupyterLab在激活的虚拟环境中,使用以下命令安装Jup
- ubuntu配置pip 清华源
溯源006
论文复现ubuntupiplinux
在Ubuntu上配置pip源可以通过修改~/.pip/pip.conf文件来完成。打开终端(Terminal)并输入以下命令创建或编辑该文件:nano~/.pip/pip.conf如果提示没有该目录或者文件不存在,则会自动创建相应的目录及文件。或者用其他编辑器也可以比如vim或者其他文本编辑器。将以下内容复制到pip.conf中保存退出:[global]index-url=https://pypi
- deepseek和ChatGPT 4o比较
调皮的芋头
chatgpt人工智能
DeepSeek和ChatGPT4o在实现方式、评测效果和使用体验方面的详细比较:实现方式:DeepSeek:推理型大模型DeepSeek的核心是推理型大模型,与指令型大模型不同,它不需要用户提供详细的步骤指令,而是通过理解用户的真实需求和场景来提供答案。后训练+RL/RLHFDeepSeekR1等推理模型是在通用模型的基础上进行“特训”(后训练+SFT/RL/RLHF),使其不仅知道得多还用得好
- Ollama+Fastgpt搭建属于自己的个人知识库
chaoshanarong
aiAI编程AI写作
一、安装dockerdocker下载网址:https://www.docker.com/products/docker-desktop/打开wsl:启用适用于Linux的Windows子系统以管理员身份运行WindowsPowerShell。运行以下命令:dism.exe/online/enable-feature/featurename:Microsoft-Windows-Subsystem-L
- [论文笔记] Cost-Effective Hyperparameter Optimization for Large Language Model Generation 大型语言模型生成推理超参优化
心心喵
论文笔记论文阅读语言模型人工智能
成本效益高的大型语言模型生成推理的超参数优化https://openreview.net/pdf?id=DoGmh8A39OChiWang1,SusanXueqingLiu2,AhmedH.Awadallah11微软研究院,雷德蒙德2史蒂文斯理工学院摘要大型语言模型(LLMs)因其生成能力引发了广泛关注,催生了各种商业应用。使用这些模型的高成本驱使应用构建者在有限的推理预算下最大化生成的价值。本文
- 电力知识图谱与大模型的结合:从构建到行业应用的深度解析
Cc不爱吃洋葱
知识图谱人工智能自然语言处理大模型大语言模型LLM语言模型
随着大数据和人工智能技术的飞速发展,电力行业迎来了智能化转型的全新契机。电力知识图谱作为一种将数据转化为结构化知识的技术,正在赋能故障诊断、设备管理、运维优化等核心场景。而当知识图谱与大模型相结合,更能释放强大的知识推理和智能预测能力,为行业智慧化发展注入新动力。本文将从专业视角,深入探讨电力知识图谱的构建过程、大模型的融入方法,以及它们在实际应用中的落地场景。通过具体案例剖析与技术解读,帮助你了
- 采用分布式部署deepseek
慧香一格
AI学习分布式deepseek
分布式部署DeepSeek涉及使用多个计算节点来加速模型训练或提升推理效率。下面是一个基本的指南,帮助您了解如何进行分布式部署。1.环境准备硬件需求:确保您的集群环境中有足够的GPU资源,并且所有机器之间可以通过高速网络互联。软件依赖:安装必要的库和工具,如PyTorch、Transformers等。特别地,对于分布式训练,还需要安装torch.distributed或者类似的库支持,例如Horo
- C#: String s = new String(“Hello“)无法编译?编程语言字符集有两个?为什么这种变量名“\u0061\u0062”都能编译通过?
程序员小迷
编程语言小话c++小话iosc语言c++objective-cc#JavaPythonSwift
C#:Strings=newString("Hello")无法编译?C#String类型是literal常量,默认不能用new创建,但可以在unsafe下用char*字符串指针创建。char*charPtr=stackallocchar[2];charPtr[0]='H';charPtr[1]='\0';StringmyString=newString(charPtr);Console.Write
- 《OSI模型与TCP/IP模型:从理论到实践的全面解析》
夏の橘
HCIA学习之路计算机网络tcp/ip网络
引言在计算机网络中,OSI模型和TCP/IP模型是理解网络通信的核心框架。然而,许多人对两者的区别、联系及实际应用场景感到困惑。本文将通过分层对比和实例分析,帮助读者彻底掌握这两个模型的本质。一、OSI模型:七层理想化框架1.设计目标OSI(OpenSystemsInterconnection)模型由国际标准化组织(ISO)提出,目标是统一全球网络协议标准,实现不同厂商设备的互联互通。2.七层结构
- 51-31 CVPR’24 | VastGaussian,3D高斯大型场景重建
深圳季连AIgraphX
aiXpilot智驾大模型1自动驾驶智慧城市AIGC计算机视觉数据挖掘
2024年2月,清华大学、华为和中科院联合发布的VastGaussian模型,实现了基于3DGaussianSplatting进行大型场景高保真重建和实时渲染。Abstract现有基于NeRF大型场景重建方法,往往在视觉质量和渲染速度方面存在局限性。虽然最近3DGaussiansSpltting在小规模和以对象为中心的场景中效果很好,但由于视频内存有限、优化时间长、外观变化明显,将其扩展到大型场景
- 【JAVA工程师从0开始学AI】,第二步:从强类型到动态语言:Java工程师的Python语法避坑指南
架构默片
JAVA工程师从0开始学AIpythonjavawindows
这是一篇介绍Python语法与JAVA语法区别文章,让我们以对比的方式,来学习一下Python的语法。首先我们看一下下面的Python代码,和具体在java当中分别代表了什么意思numbers=[1,2,3,4,5,6,7,8,9]#①创建数字列表(像Java的ArrayList,但不用写泛型)odd_numbers=[]#②准备装奇数的空列表(类似Java的newArrayListnumbers
- 微服务之网关
qq_40784183
微服务负载均衡架构
1.网关的选择Zuul和SpringCloudGateway(其他没用过了)2.Zuul(NetflixZuul)与SpringCloudGateway对比性能方面Zuul:Zuul1.x是基于Servlet的同步阻塞模型,在处理高并发请求时性能相对较弱。每个请求都会占用一个线程,当并发量较大时,线程资源可能会成为瓶颈。不过,Zuul2.x版本在性能上有所改进,采用了异步非阻塞模型,能够更好地处理
- 随机梯度下降一定会收敛么?
AndrewHZ
人工智能深度学习算法
1.什么是随机梯度下降?随机梯度下降(StochasticGradientDescent,SGD)是一种用于最小化目标函数的迭代优化算法,在机器学习和深度学习领域应用广泛。2.随机梯度下降算法的基本原理1.基于梯度的优化基础该算法是基于梯度的优化算法,用于寻找函数的最优解,通常是最小化损失函数。在机器学习和深度学习中,模型通过调整参数来最小化损失函数,以达到最佳的预测性能。2.迭代更新参数从初始的
- 《Ollama 与 DeepSeek 整合应用入门指南》一、二、三章
Allen-Steven
ollamadeepseek
第一章:工具概述与核心价值1.1Ollama技术解析本地化部署优势:无需网络连接的数据隐私保护跨平台架构设计:支持Windows/macOS/Linux全平台模型管理引擎:自动化处理模型依赖与版本控制1.2DeepSeek模型特性多模态处理能力:文本生成、代码理解、数学推理中文优化架构:针对中文语料的特殊训练策略模型家族图谱:从1.3B到67B的参数规模选择1.3技术整合价值本地智能计算:企业数据
- Git 深度解析 —— 从基础到进阶
Exhausted、
gitelasticsearch大数据搜索引擎git
目录1.Git基础概念1.1版本控制(VersionControl)1.2分布式版本控制(DistributedVersionControl)1.3核心概念1.4Git工作流程2.Git常用命令2.1初始化仓库2.2添加文件2.3提交修改2.4查看状态2.5查看历史记录2.6切换分支2.7创建分支2.8合并分支2.9克隆仓库2.10推送修改2.11拉取更新3.Git进阶技巧3.1Git撤销操作3.
- 交换机三层转发原理(涵盖ARP,ICMP,IP协议)
一名嵌入式糕手
tcp/ip服务器linux
ARP(地址解析协议)ARP是一种将IP地址转换为MAC地址的协议,工作在OSI模型的链路层,ARP主要用于局域网中,当一个主机需要与同一网络中的另一台主机通信时,它首先会使用ARP来获取目标主机的MAC地址,ARP报文由源,目MAC,载荷组成,载荷包含源IP和目的IP,ARP请求是一个广播帧,目标主机收到报文后会解析载荷内容,如果目的IP与自身IP匹配,会返回ARP响应,为一个单播帧,为了提高效
- 【Linux探索学习】第二十九弹——线程概念:Linux线程的基本概念与线程控制详解
GG Bond.ฺ
Linux探索学习linux学习算法运维
Linux学习笔记:https://blog.csdn.net/2301_80220607/category_12805278.html?spm=1001.2014.3001.5482前言:在现代操作系统中,线程是程序执行流的最小单元。与进程相比,线程更加轻量级,创建和销毁的开销更小,且线程之间可以共享内存空间,因此在多任务处理、并发编程中,线程的使用非常广泛。Linux作为一个多用户、多任务的操
- 【JAVA工程师从0开始学AI】,第四步:闭包与高阶函数——用Python的“魔法函数“重构Java思维
架构默片
JAVA工程师从0开始学AI人工智能javapython
副标题:当严谨的Java遇上"七十二变"的Python函数式编程历经变量战争、语法迷雾、函数对决,此刻我们将踏入Python最迷人的领域——函数式编程。当Java工程师还在用接口和匿名类实现回调时,Python的闭包已化身"智能机器人",带着"记忆传承"的能力自由穿梭于代码之间。这里没有类的枷锁,函数既是武器又是盾牌,高阶函数组合出的"代码万花筒",正是AI数据处理、模型训练的核心密码。本文将用J
- 《Stable Diffusion绘画完全指南:从入门到精通的Prompt设计艺术》-配套代码示例
Allen-Steven
SD创作实践python相关应用StableDiffusion绘画学习指南深度学习pytorch人工智能stablediffusionCheckpointprompt
第一章:模型加载与基础生成1.1基础模型加载fromdiffusersimportStableDiffusionPipelineimporttorch#加载SD1.5基础模型(FP32精度)pipe=StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5",torch_dtype=torch.float32).
- 【微服务】springboot 构建docker镜像多模式使用详解
小码农叔叔
linux与容器实战springboot相关springboot微服务java
目录一、前言二、微服务常用的镜像构建方案3.1使用Dockerfile3.2使用dockerplugin插件3.3使用dockercompose编排文件三、环境准备3.1服务器3.2安装JDK环境3.2.1创建目录3.2.2下载安装包3.2.3配置环境变量2.2.4查看java版本3.3安装maven3.3.1下载maven安装包并解压3.3.2配置setting文件3.3.3配置maven的环境
- C++设计模式9:装饰器模式
令狐掌门
C++/C#设计模式C++装饰器模式
C++23种设计模式系列文章目录创建型模式第1式工厂方法模式第2式抽象工厂模式第3式单例模式第4式建造者模式第5式原型模式结构型模式第6式适配器模式
- CSDN宣布C知道产品接入DeepSeek R1满血版大模型,文心一言、星火认知模型
周杰伦_Jay
大模型LLMs热点事件文心一言人工智能leetcode目标检测机器学习自然语言处理生成对抗网络
文章目录前言一、产品升级与模式革新二、技术整合与大模型应用三、深度思考模式的核心优势四、应用场景与用户受益五、未来发展与技术创新前言亲爱的家人们,创作很不容易,若对您有帮助的话,请点赞收藏加关注哦,您的关注是我持续创作的动力,谢谢大家!有问题请私信或联系邮箱:
[email protected]一、产品升级与模式革新CSDN宣布C知道产品接入DeepSeek大模型。通过植入“深度思考模式”,全面升级AI
- DeepSeek 实用集成,接入各类软件
安替-AnTi
deepseek集成软件实用
将DeepSeek大模型能力轻松接入各类软件。访问DeepSeek开放平台来获取您的APIkey。详细内容参考:点我应用程序QuantalogicQuantaLogic是一个ReAct(推理和行动)框架,用于构建高级AI代理
- 本地化部署AI知识库:基于Ollama+DeepSeek+AnythingLLM保姆级教程
elecfan2011
人工智能
前言在数据安全和隐私保护需求日益增长的今天,本地化部署AI知识库成为企业/开发者的首选方案。本文将手把手教你如何通过Ollama(模型管理工具)、DeepSeek-R1(国产开源大模型)和AnythingLLM(知识库管理平台),搭建一套完全本地运行的智能问答系统。全程无需联网,数据100%私有化!目录环境准备与工具安装部署DeepSeek-R1模型配置AnythingLLM知识库平台构建本地知识
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后