Three.js 基础

引言

本文主要是讲解Three.js的相关概念,帮助读者对Three.js以及相关知识形成比较完整的理解。

近年来web得到了快速的发展。随着HTML5的普及,网页的表现能力越来越强大。网页上已经可以做出很多复杂的动画,精美的效果。 
但是,人总是贪的。那么,在此之上还能做什么呢?其中一种就是通过WebGL在网页中绘制高性能的3D图形。

OpenGL,WebGL到Three.js

OpenGL大概许多人都有所耳闻,它是最常用的跨平台图形库。 
WebGL是基于OpenGL设计的面向web的图形标准,提供了一系列JavaScript API,通过这些API进行图形渲染将得以利用图形硬件从而获得较高性能。 
Three.js是通过对WebGL接口的封装与简化而形成的一个易用的图形库。

简单点的说法:WebGL可以看成是浏览器给我们提供的接口,在javascript中可以直接用这些API进行3D图形的绘制;而Three.js就是在这些接口上又帮我们封装得更好用一些。

WebGL与Three.js对比

既然有了WebGL,我们为什么还需要Three.js? 
这是因为WebGL门槛相对较高,需要相对较多的数学知识。虽然WebGL提供的是面向前端的API,但本质上WebGL跟前端开发完全是两个不同的方向,知识的重叠很少。相关性只是他们都在web平台上,都是用javascript而已。一个前端程序员或许还熟悉解析几何,但是还熟悉线性代数的应该寥寥无几了(比如求个逆转置矩阵试试?),更何况使用中强调矩阵运算中的物理意义,这在教学中也是比较缺失的。 
因此,前端工程师想要短时间上手WebGL还是挺有难度的。 
于是,Three.js对WebGL提供的接口进行了非常好的封装,简化了很多细节,大大降低了学习成本。并且,几乎没有损失WebGL的灵活性。 
因此,从Three.js入手是值得推荐的,这可以让你在较短的学习后就能面对大部分需求场景。

Three.js的学习问题

Three.js的入门是相对简单的,但是当我们真的去学的时候,会发现一个很尴尬的问题:相关的学习资料很少。 
通常这种流行的库都有很完善的文档,很多时候跟着官方的文档或官方的入门教程学习就是最好的路线。但Three不是的,它的文档对初学者来说太过简明扼要。 
不过官方提供了非常丰富的examples,几乎所有你需要的用法都在某个example中有所体现。但这些example不太适合用来入门,倒是适合入门之后的进一步学习。

这里推荐一些相对较好的教程: 
Three.js入门指南 
这是一份很好的Three.js 轻量级入门教程,作者文笔很好,基础知识讲解得简明易懂。

Three.js开发指南(第一版中文版) 
Learning Three.js- Second Edition 
Learning Three.js:The JavaScript 3D Library for WebGL是现在不多的也是最好的Three.js入门书,比较全面地讲解了Three.js的各种功能。 
如果有能力的话,建议阅读英文版第二版,出版于2015年,与现在的Three.js区别很小。 
中文版翻译自出版于2012年的原书第一版,大部分概念是适用的,但很多细节已经有所改变。 
Three.js入门教程 
这是对国外一份教程的翻译,一共六篇文章。讲解不多,更多的是展示各个基本功能怎么用。更适合有一些图形基础的同学。

当然,实际的学习过程中这些资料肯定是不太够的,遇到问题还是要自己去查资料。不过这里要提醒一下,Three.js的更新是相当频繁的,现在是r80版本,自2010年4月发布r1以来,这已经是第72个版本了(中间有的版本号跳过了)。因此,在网上找到的资料有些可能是不适合当前版本的,需要注意甄别(前面推荐的资料也都或多或少存在这样的问题)。

Three.js中的一些概念

要在屏幕上展示3D图形,思路大体上都是这样的:

  1. 构建一个三维空间 
    • Three中称之为场景(Scene)
  2. 选择一个观察点,并确定观察方向/角度等 
    • Three中称之为相机(Camera)
  3. 在场景中添加供观察的物体 
    • Three中的物体有很多种,包括Mesh,Line,Points等,它们都继承自Object3D类
  4. 将观察到的场景渲染到屏幕上的指定区域 
    • Three中使用Renderer完成这一工作

下面来具体看一看Three中的这些概念。

Scene

场景是所有物体的容器,也对应着我们创建的三维世界。

Camera

坐标系

Camera是三维世界中的观察者,为了观察这个世界,首先我们要描述空间中的位置。 
左手/右手坐标系 
Three中使用采用常见的右手坐标系定位。

三维投影

Three中的相机有两种,分别是正投影相机THREE.OrthographicCamera和透视投影相机THREE.PerspectiveCamera。 
这里写图片描述 
正交投影与透视投影的区别如上图所示,左图是正交投影,物体发出的光平行地投射到屏幕上,远近的方块都是一样大的;右图是透视投影,近大远小,符合我们平时看东西的感觉。 
维基百科:三维投影

正交投影相机

正交投影相机 
注:图中的”视点”对应着Three中的Camera。 
这里补充一个视景体的概念:视景体是一个几何体,只有视景体内的物体才会被我们看到,视景体之外的物体将被裁剪掉。这是为了去除不必要的运算。 
正交投影相机的视景体是一个长方体,OrthographicCamera的构造函数是这样的:OrthographicCamera( left, right, top, bottom, near, far ) 
Camera本身可以看作是一个点,left则表示左平面在左右方向上与Camera的距离。另外几个参数同理。于是六个参数分别定义了视景体六个面的位置。

可以近似地认为,视景体里的物体平行投影到近平面上,然后近平面上的图像被渲染到屏幕上。

透视投影相机

透视投影相机 
透视投影相机的视景体是个四棱台,它的构造函数是这样的:PerspectiveCamera( fov, aspect, near, far ) 
fov对应着图中的视角,是上下两面的夹角。aspect是近平面的宽高比。在加上近平面距离near,远平面距离far,就可以唯一确定这个视景体了。 
透视投影相机很符合我们通常的看东西的感觉,因此大多数情况下我们都是用透视投影相机展示3D效果。

Objects

有了相机,总要看点什么吧?在场景中添加一些物体吧。 
Three中供显示的物体有很多,它们都继承自Object3D类,这里我们主要看一下Mesh和Points两种。

Mesh

我们都知道,计算机的世界里,一条弧线是由有限个点构成的有限条线段连接得到的。线段很多时,看起来就是一条平滑的弧线了。 
计算机中的三维模型也是类似的,普遍的做法是用三角形组成的网格来描述,我们把这种模型称之为Mesh模型。 
Mesh Model 
这是那只著名的斯坦福兔子。它在3D图形中的地位与数字图像处理领域中著名的lena是类似的。 
看这只兔子,随着三角形数量的增加,它的表面越来越平滑/准确。

在Three中,Mesh的构造函数是这样的:Mesh( geometry, material ) 
geometry是它的形状,material是它的材质。 
不止是Mesh,创建很多物体都要用到这两个属性。下面我们来看看这两个重要的属性。

Geometry

Geometry,形状,相当直观。Geometry通过存储模型用到的点集和点间关系(哪些点构成一个三角形)来达到描述物体形状的目的。 
Three提供了立方体(其实是长方体)、平面(其实是长方形)、球体、圆形、圆柱、圆台等许多基本形状; 
你也可以通过自己定义每个点的位置来构造形状; 
对于比较复杂的形状,我们还可以通过外部的模型文件导入。

Material

Material,材质,这就没有形状那么直观了。 
材质其实是物体表面除了形状以为所有可视属性的集合,例如色彩、纹理、光滑度、透明度、反射率、折射率、发光度。 
这里讲一下材质(Material)、贴图(Map)和纹理(Texture)的关系。 
材质上面已经提到了,它包括了贴图以及其它。 
贴图其实是‘贴’和‘图’,它包括了图片和图片应当贴到什么位置。 
纹理嘛,其实就是‘图’了。 
Three提供了多种材质可供选择,能够自由地选择漫反射/镜面反射等材质。

Points

讲完了Mesh,我们来看看另一种Object——Points。 
Points其实就是一堆点的集合,它在之前很长时间都被称为ParticleSystem(粒子系统),r68版本时更名为PointCloud,r72版本时才更名为Points。更名主要是因为,Mr.doob认为,粒子系统应当是包括粒子和相关的物理特性的处理的一套完整体系,而Three中的Points简单得多。因此最终这个类被命名为Points。 
Points能够用来实现的典型效果是这样的:官方example

Light

神说:要有光! 
光影效果是让画面丰富的重要因素。 
Three提供了包括环境光AmbientLight、点光源PointLight、 聚光灯SpotLight、方向光DirectionalLight、半球光HemisphereLight等多种光源。 
只要在场景中添加需要的光源就好了。

Renderer

在场景中建立了各种物体,也有了光,还有观察物体的相机,是时候把看到的东西渲染到屏幕上了。这就是Render做的事情了。 
Renderer绑定一个canvas对象,并可以设置大小,默认背景颜色等属性。 
调用Renderer的render函数,传入scene和camera,就可以把图像渲染到canvas中了。

让画面动起来

现在,一个静态的画面已经可以得到了,怎么才能让它动起来? 
很简单的想法,改变场景中object的位置啊角度啊各种属性,然后重新调用render函数渲染就好了。 
那么重新渲染的时机怎么确定? 
HTML5为我们提供了requestAnimFrame,它会自动在每次页面重绘前调用传入的函数。 
如果我们一开始这样渲染:

function render()
{
    renderer.render(scene, camera);
}

只需要改成这样:

function render()
{
    requestAnimationFrame(render);
    object.position.x += 1;
    renderer.render(scene, camera);
}

object就可以动起来了!

举个栗子

下面我们用一个简单的例子来梳理一下这个过程。 
首先写一个有Canvas元素的页面吧。


<html>
<head>
    <meta charset="UTF-8">
    <title>立方体title>
    <script src="http://sqimg.qq.com/qq_product_operations/mma/javanli_test/lib/three.min.js">script>
    <style type="text/css">
        html, body {
            margin: 0;
            padding: 0;
        }
        #three_canvas {
            position: absolute;
            width: 100%;
            height: 100%;
        }
    style>
head>
<body>
    <canvas id="three_canvas">canvas>
body>
html>

下面来做Javascript的部分 
首先初始化Renderer

function initRenderer() {
    width = document.getElementById('three_canvas').clientWidth;
    height = document.getElementById('three_canvas').clientHeight;
    renderer = new THREE.WebGLRenderer({
        //将Canvas绑定到renderer
        canvas: document.getElementById('three_canvas')
    });
    renderer.setSize(width, height);//将渲染的大小设为与Canvas相同
    renderer.setClearColor(0xFFFFFF, 1.0);//设置默认颜色与透明度
}

初始化场景:

function initScene() {
    scene = new THREE.Scene();
}

初始化相机:

function initCamera() {
    //简单的正交投影相机,正对着视口的中心,视口大小与Canvas大小相同。
    camera = new THREE.OrthographicCamera(width / -2, width / 2, height / 2, height / -2, 1, 1000);
    //设置相机的位置
    camera.position.x = 0;
    camera.position.y = 0;
    camera.position.z = 200;
    //设置相机的上方向
    camera.up.x = 0;
    camera.up.y = 1;
    camera.up.z = 0;
    //设置相机聚焦的位置(其实就是确定一个方向)
    camera.lookAt({
        x: 0,
        y: 0,
        z: 0
    });
}

要唯一确定一个相机的位置与方向,position、up、lookAt三个属性是缺一不可的。 
这里我们创建了一个正交投影相机,这里我将视景体大小与屏幕分辨率保持一致只是为了方便,这样坐标系中的一个单位长度就对应屏幕的一个像素了。 
我们将相机放在Z轴上,面向坐标原点,相机的上方向为Y轴方向,注意up的方向和lookAt的方向必然是垂直的(类比自己的头就知道了)。

下面添加一个立方体到场景中:

function initObject() {
    //创建一个边长为100的立方体
    var geometry = new THREE.CubeGeometry(100, 100, 100);
    object = new THREE.Mesh(geometry, new THREE.MeshNormalMaterial());
    scene.add(object);
}

注意我们使用了法向材质MeshNormalMaterial,这样立方体每个面的颜色与这个面对着的方向是相关的,更便于观察/调试。

在这个简单的demo里我不打算添加光影效果,而法向材质对光也是没有反应的。 
最后来创建一个动画循环吧

function render() {
    requestAnimationFrame(render);
    object.rotation.x += 0.05;
    object.rotation.y += 0.05;
    renderer.render(scene, camera);
}

每次重绘都让这个立方体转动一点点。 
当页面加载好时,调用前面这些函数就好了

function threeStart() {
    initRenderer();
    initCamera();
    initScene();
    initObject();
    render();
}
window.onload = threeStart();

完整的demo是这个样子的:


<html>
<head>
    <meta charset="UTF-8">
    <title>立方体title>
    <script src="http://sqimg.qq.com/qq_product_operations/mma/javanli_test/lib/three.min.js">script>
    <style type="text/css">
        html, body {
            margin: 0;
            padding: 0;
        }

        #three_canvas {
            position: absolute;
            width: 100%;
            height: 100%;
        }
    style>
head>
<body>
<canvas id="three_canvas">canvas>
<script>
    var renderer, camera, scene, light, object;
    var width, height;
    function initRenderer() {
        width = document.getElementById('three_canvas').clientWidth;
        height = document.getElementById('three_canvas').clientHeight;
        renderer = new THREE.WebGLRenderer({
            canvas: document.getElementById('three_canvas')
        });
        renderer.setSize(width, height);
        renderer.setClearColor(0xFFFFFF, 1.0);
    }

    function initCamera() {
        camera = new THREE.OrthographicCamera(width / -2, width / 2, height / 2, height / -2, 1, 1000);
        camera.position.x = 0;
        camera.position.y = 0;
        camera.position.z = 200;
        camera.up.x = 0;
        camera.up.y = 1;
        camera.up.z = 0;
        camera.lookAt({
            x: 0,
            y: 0,
            z: 0
        });
    }
    function initScene() {
        scene = new THREE.Scene();
    }
    function initObject() {
        var geometry = new THREE.CubeGeometry(100, 100, 100);
        object = new THREE.Mesh(geometry, new THREE.MeshNormalMaterial());
        scene.add(object);
    }
    function render() {
        requestAnimationFrame(render);
        object.rotation.x += 0.05;
        object.rotation.y += 0.05;
        renderer.render(scene, camera);
    }
    function threeStart() {
        initRenderer();
        initCamera();
        initScene();
        initObject();
        render();
    }
    window.onload = threeStart();
script>
body>
html>

保存为html后打开,在屏幕中央会显示这样一个转动的立方体 
cube




文章转载自:http://blog.csdn.net/lijunfan1994/article/details/52370629

你可能感兴趣的:(three.js,WenGL,three.js,基础)