Executor 框架是 Java5 之后引进的,在 Java 5 之后,通过 Executor 来启动线程比使用 Thread 的 start 方法更好,除了更易管理,效率更好(用线程池实现,节约开销)外,还有关键的一点:有助于避免 this 逃逸问题。this 逃逸是指在构造函数返回之前其他线程就持有该对象的引用,调用尚未构造完全的对象的方法。
Executor 框架不仅包括了线程池的管理,还提供了线程工厂、队列以及拒绝策略等,Executor 框架让并发编程变得更加简单。
执行任务需要实现的 Runnable 接口 或 Callable接口。Runnable 接口或 Callable 接口 实现类都可以被 ThreadPoolExecutor 或 ScheduledThreadPoolExecutor 执行。
Future 接口以及 Future 接口的实现类 FutureTask 类都可以代表异步计算的结果。
当我们把 Runnable接口 或 Callable 接口 的实现类提交给 ThreadPoolExecutor 或 ScheduledThreadPoolExecutor 执行。(调用 submit() 方法时会返回一个 FutureTask 对象。
线程池实现类 ThreadPoolExecutor 是 Executor 框架最核心的类。
/**
* 用给定的初始参数创建一个新的ThreadPoolExecutor。
*/
public ThreadPoolExecutor(int corePoolSize,//线程池的核心线程数量
int maximumPoolSize,//线程池的最大线程数
long keepAliveTime,//当线程数大于核心线程数时,多余的空闲线程存活的最长时间
TimeUnit unit,//时间单位
BlockingQueue<Runnable> workQueue,//任务队列,用来储存等待执行任务的队列
ThreadFactory threadFactory,//线程工厂,用来创建线程,一般默认即可
RejectedExecutionHandler handler//拒绝策略,当提交的任务过多而不能及时处理时,我们可以定制策略来处理任务
) {
if (corePoolSize < 0 ||
maximumPoolSize <= 0 ||
maximumPoolSize < corePoolSize ||
keepAliveTime < 0)
throw new IllegalArgumentException();
if (workQueue == null || threadFactory == null || handler == null)
throw new NullPointerException();
this.corePoolSize = corePoolSize;
this.maximumPoolSize = maximumPoolSize;
this.workQueue = workQueue;
this.keepAliveTime = unit.toNanos(keepAliveTime);
this.threadFactory = threadFactory;
this.handler = handler;
}
ThreadPoolExecutor 3 个最重要的参数:
如果当前同时运行的线程数量达到最大线程数量并且队列也已经被放满了任务时,ThreadPoolTaskExecutor 定义一些策略:
新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,新任务就会被存放在队列中。
我们使用 executor.execute(worker)来提交一个任务到线程池中去。
// 存放线程池的运行状态 (runState) 和线程池内有效线程的数量 (workerCount)
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static int workerCountOf(int c) {
return c & CAPACITY;
}
//任务队列
private final BlockingQueue<Runnable> workQueue;
public void execute(Runnable command) {
// 如果任务为null,则抛出异常。
if (command == null)
throw new NullPointerException();
// ctl 中保存的线程池当前的一些状态信息
int c = ctl.get();
// 下面会涉及到 3 步 操作
// 1.首先判断当前线程池中执行的任务数量是否小于 corePoolSize
// 如果小于的话,通过addWorker(command, true)新建一个线程,并将任务(command)添加到该线程中;然后,启动该线程从而执行任务。
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
// 2.如果当前执行的任务数量大于等于 corePoolSize 的时候就会走到这里,表明创建新的线程失败。
// 通过 isRunning 方法判断线程池状态,线程池处于 RUNNING 状态并且队列可以加入任务,该任务才会被加入进去
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
// 再次获取线程池状态,如果线程池状态不是 RUNNING 状态就需要从任务队列中移除任务,并尝试判断线程是否全部执行完毕。同时执行拒绝策略。
if (!isRunning(recheck) && remove(command))
reject(command);
// 如果当前工作线程数量为0,新创建一个线程并执行。
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
//3. 通过addWorker(command, false)新建一个线程,并将任务(command)添加到该线程中;然后,启动该线程从而执行任务。
// 传入 false 代表增加线程时判断当前线程数是否少于 maxPoolSize
//如果addWorker(command, false)执行失败,则通过reject()执行相应的拒绝策略的内容。
else if (!addWorker(command, false))
reject(command);
}
在 execute 方法中,多次调用 addWorker 方法。addWorker 这个方法主要用来创建新的工作线程,如果返回 true 说明创建和启动工作线程成功,否则的话返回的就是 false。
// 全局锁,并发操作必备
private final ReentrantLock mainLock = new ReentrantLock();
// 跟踪线程池的最大大小,只有在持有全局锁mainLock的前提下才能访问此集合
private int largestPoolSize;
// 工作线程集合,存放线程池中所有的(活跃的)工作线程,只有在持有全局锁mainLock的前提下才能访问此集合
private final HashSet<Worker> workers = new HashSet<>();
//获取线程池状态
private static int runStateOf(int c) { return c & ~CAPACITY; }
//判断线程池的状态是否为 Running
private static boolean isRunning(int c) {
return c < SHUTDOWN;
}
/**
* 添加新的工作线程到线程池
* @param firstTask 要执行
* @param core参数为true的话表示使用线程池的基本大小,为false使用线程池最大大小
* @return 添加成功就返回true否则返回false
*/
private boolean addWorker(Runnable firstTask, boolean core) {
retry:
for (;;) {
//这两句用来获取线程池的状态
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
//获取线程池中工作的线程的数量
int wc = workerCountOf(c);
// core参数为false的话表明队列也满了,线程池大小变为 maximumPoolSize
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
//原子操作将workcount的数量加1
if (compareAndIncrementWorkerCount(c))
break retry;
// 如果线程的状态改变了就再次执行上述操作
c = ctl.get();
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
// 标记工作线程是否启动成功
boolean workerStarted = false;
// 标记工作线程是否创建成功
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
// 加锁
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
//获取线程池状态
int rs = runStateOf(ctl.get());
//rs < SHUTDOWN 如果线程池状态依然为RUNNING,并且线程的状态是存活的话,就会将工作线程添加到工作线程集合中
//(rs=SHUTDOWN && firstTask == null)如果线程池状态小于STOP,也就是RUNNING或者SHUTDOWN状态下,同时传入的任务实例firstTask为null,则需要添加到工作线程集合和启动新的Worker
// firstTask == null证明只新建线程而不执行任务
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
//更新当前工作线程的最大容量
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
// 工作线程是否启动成功
workerAdded = true;
}
} finally {
// 释放锁
mainLock.unlock();
}
如果成功添加工作线程,则调用Worker内部的线程实例t的Thread#start()方法启动真实的线程实例
if (workerAdded) {
t.start();
/// 标记线程启动成功
workerStarted = true;
}
}
} finally {
// 线程启动失败,需要从工作线程中移除对应的Worker
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
Runnable 接口不会返回结果或抛出检查异常,但是 Callable 接口可以。所以,如果任务不需要返回结果或抛出异常推荐使用 Runnable 接口,这样代码看起来会更加简洁。
工具类 Executors 可以实现将 Runnable 对象转换成 Callable 对象。
execute()方法用于提交不需要返回值的任务,所以无法判断任务是否被线程池执行成功与否;
submit()方法用于提交需要返回值的任务。线程池会返回一个 Future 类型的对象,通过这个 Future 对象可以判断任务是否执行成功,并且可以通过 Future 的 get()方法来获取返回值,get()方法会阻塞当前线程直到任务完成,而使用 get(long timeout,TimeUnit unit)方法的话,如果在 timeout 时间内任务还没有执行完,就会抛出 java.util.concurrent.TimeoutException。
shutdown() :关闭线程池,线程池的状态变为 SHUTDOWN。线程池不再接受新任务了,但是队列里的任务得执行完毕。
shutdownNow() :关闭线程池,线程池的状态变为 STOP。线程池会终止当前正在运行的任务,并停止处理排队的任务并返回正在等待执行的 List。
isShutDown 当调用 shutdown() 方法后返回为 true。
isTerminated 当调用 shutdown() 方法后,并且所有提交的任务完成后返回为 true。
FixedThreadPool 的 corePoolSize 和 maximumPoolSize 都被设置为 nThreads,即使 maximumPoolSize 的值比 corePoolSize 大,也至多只会创建 corePoolSize 个线程。这是因为FixedThreadPool 使用的是容量为 Integer.MAX_VALUE 的 LinkedBlockingQueue(无界队列),队列永远不会被放满。
FixedThreadPool 使用无界队列 LinkedBlockingQueue(队列的容量为 Integer.MAX_VALUE)作为线程池的工作队列会对线程池带来如下影响:
SingleThreadExecutor 是只有一个线程的线程池。
SingleThreadExecutor 和 FixedThreadPool 一样,使用的都是容量为 Integer.MAX_VALUE 的 LinkedBlockingQueue(无界队列)作为线程池的工作队列。SingleThreadExecutor 使用无界队列作为线程池的工作队列会对线程池带来的影响与 FixedThreadPool 相同。说简单点,就是可能会导致 OOM。
CachedThreadPool 是一个会根据需要创建新线程的线程池。CachedThreadPool 的corePoolSize 被设置为空(0),maximumPoolSize被设置为 Integer.MAX.VALUE,即它是无界的,这也就意味着如果主线程提交任务的速度高于 maximumPool 中线程处理任务的速度时,CachedThreadPool 会不断创建新的线程。极端情况下,这样会导致耗尽 cpu 和内存资源。
CachedThreadPool 使用的是同步队列 SynchronousQueue, 允许创建的线程数量为 Integer.MAX_VALUE ,可能会创建大量线程,从而导致 OOM。
ScheduledThreadPool 用来在给定的延迟后运行任务或者定期执行任务。ScheduledThreadPool 是通过 ScheduledThreadPoolExecutor 创建的,使用的DelayedWorkQueue(延迟阻塞队列)作为线程池的任务队列。
DelayedWorkQueue 的内部元素并不是按照放入的时间排序,而是会按照延迟的时间长短对任务进行排序,内部采用的是“堆”的数据结构,可以保证每次出队的任务都是当前队列中执行时间最靠前的。DelayedWorkQueue 添加元素满了之后会自动扩容原来容量的 1/2,即永远不会阻塞,最大扩容可达 Integer.MAX_VALUE,所以最多只能创建核心线程数的线程。
如有问题,欢迎指正!