from pyspark.sql.functions import col,udf
from pyspark.ml.linalg import Vectors, _convert_to_vector, VectorUDT, DenseVector
# 数字的可转为vector,但字符串转为vector会报错
to_vec = udf(lambda x: DenseVector([x]), VectorUDT())
# 字符串转为array
to_array = udf(lambda x: [x], ArrayType(StringType()))
df = spark.createDataFrame([(1, [1,2,3]), (2, [4,5,6])], ['label', 'data'])
df.show()
df.printSchema()
+-----+---------+
|label| data|
+-----+---------+
| 1|[1, 2, 3]|
| 2|[4, 5, 6]|
+-----+---------+
root
|-- label: long (nullable = true)
|-- data: array (nullable = true)
| |-- element: long (containsNull = true)
# 可以根据某一列的值作为索引来选择特定位置的值
from pyspark.sql.functions import udf,col
from pyspark.sql.types import FloatType
firstelement=udf(lambda k,v:float(v[int(k)]),FloatType())
df.withColumn('value', firstelement(col('label'), col('data'))).show(4, truncate=False)
+-----+---------+-----+
|label|data |value|
+-----+---------+-----+
|1 |[1, 2, 3]|2.0 |
|2 |[4, 5, 6]|6.0 |
+-----+---------+-----+
参考https://stackoverflow.com/questions/45789489/how-to-split-a-list-to-multiple-columns-in-pyspark
df = hc.createDataFrame(sc.parallelize([['a', [1,2,3]], ['b', [2,3,4]]]), ["key", "value"])
df.printSchema()
df.show()
root
|-- key: string (nullable = true)
|-- value: array (nullable = true)
| |-- element: long (containsNull = true)
you can access the values like you would with python using []
:
df.select("key", df.value[0], df.value[1], df.value[2]).show()
+---+--------+--------+--------+
|key|value[0]|value[1]|value[2]|
+---+--------+--------+--------+
| a| 1| 2| 3|
| b| 2| 3| 4|
+---+--------+--------+--------+
+---+-------+
|key| value|
+---+-------+
| a|[1,2,3]|
| b|[2,3,4]|
+---+-------+
If it is of type StructType()
: (maybe you built your dataframe by reading a JSON)
df2 = df.select("key", psf.struct(
df.value[0].alias("value1"),
df.value[1].alias("value2"),
df.value[2].alias("value3")
).alias("value"))
df2.printSchema()
df2.show()
root
|-- key: string (nullable = true)
|-- value: struct (nullable = false)
| |-- value1: long (nullable = true)
| |-- value2: long (nullable = true)
| |-- value3: long (nullable = true)
+---+-------+
|key| value|
+---+-------+
| a|[1,2,3]|
| b|[2,3,4]|
+---+-------+
you can directly 'split' the column using *
:
df2.select('key', 'value.*').show()
+---+------+------+------+
|key|value1|value2|value3|
+---+------+------+------+
| a| 1| 2| 3|
| b| 2| 3| 4|
+---+------+------+------+
from pyspark.sql.types import * # Needed to define DataFrame Schema.
from pyspark.sql.functions import expr
# Define schema to create DataFrame with an array typed column.
mySchema = StructType([StructField("V1", StringType(), True),
StructField("V2", ArrayType(IntegerType(),True))])
df = spark.createDataFrame([['A', [1, 2, 3, 4, 5, 6, 7]],
['B', [8, 7, 6, 5, 4, 3, 2]]], schema= mySchema)
# Split list into columns using 'expr()' in a comprehension list.
arr_size = 7
df = df.select(['V1', 'V2']+[expr('V2[' + str(x) + ']') for x in range(0, arr_size)])
# It is posible to define new column names.
new_colnames = ['V1', 'V2'] + ['val_' + str(i) for i in range(0, arr_size)]
df = df.toDF(*new_colnames)
参考:https://stackoverflow.com/questions/38397796/retrieve-top-n-in-each-group-of-a-dataframe-in-pyspark
rdd = sc.parallelize([("user_1", "object_1", 3),
("user_1", "object_2", 2),
("user_2", "object_1", 5),
("user_2", "object_2", 2),
("user_2", "object_2", 6)])
df = sqlContext.createDataFrame(rdd, ["user_id", "object_id", "score"])
from pyspark.sql.window import Window
from pyspark.sql.functions import rank, col
window = Window.partitionBy(df['user_id']).orderBy(df['score'].desc())
df.select('*', rank().over(window).alias('rank'))
.filter(col('rank') <= 2)
.show()
#+-------+---------+-----+----+
#|user_id|object_id|score|rank|
#+-------+---------+-----+----+
#| user_1| object_1| 3| 1|
#| user_1| object_2| 2| 2|
#| user_2| object_2| 6| 1|
#| user_2| object_1| 5| 2|
#+-------+---------+-----+----+
from pyspark.sql.functions import min, max
df = spark.createDataFrame([
"2017-01-01", "2018-02-08", "2019-01-03", "2019-01-01"], "string"
).selectExpr("CAST(value AS date) AS date")
# 或者
df = spark.createDataFrame([
"2017-01-01", "2018-02-08", "2019-01-03", "2019-01-01"], "string"
).withColumn('date', F.col('value').cast(DateType()))
min_date, max_date = df.select(min("date"), max("date")).first()
min_date, max_date
# (datetime.date(2017, 1, 1), datetime.date(2019, 1, 3))
d1 = spark.createDataFrame([(10,'a',None), (20, 'b',3), (30, 'c',4),
(20, 'b',5), (30, 'd',6), (40, None,7),
(None, 'e',8)], ['value', 'key','v2'])
d1 = d1.select('key', 'value', 'v2')
d1.where(reduce(lambda x, y: x | y, (F.col(x).isNull() for x in d1.columns))).show()
# 或者
d1.where(F.col('key').isNull() | F.col('value').isNull() | F.col('v2').isNull()).show()
# +----+-----+----+
# | key|value| v2|
# +----+-----+----+
# | a| 10|null|
# |null| 40| 7|
# | e| null| 8|
# +----+-----+----+
更进一步地,同时还检测NaN
和空字符串:
d1 = spark.createDataFrame([(10,'a', None), (20, 'b', 3.), (30, 'c',4.),
(20, 'b',5.), (30, 'd', np.nan), (40, None,7.),
(None, 'e',8.), (50, '', 8.)], ['value', 'key','v2'])
d1 = d1.select('key', 'value', 'v2')
d1.show()
# +----+-----+----+
# | key|value| v2|
# +----+-----+----+
# | a| 10|null|
# | b| 20| 3.0|
# | c| 30| 4.0|
# | b| 20| 5.0|
# | d| 30| NaN|
# |null| 40| 7.0|
# | e| null| 8.0|
# | | 50| 8.0|
# +----+-----+----+
d1.where((F.col('key').isNotNull()) & (F.col('key')!='') & (~F.isnan(F.col('v2')))).show()
# +---+-----+----+
# |key|value| v2|
# +---+-----+----+
# | a| 10|null|
# | b| 20| 3.0|
# | c| 30| 4.0|
# | b| 20| 5.0|
# | e| null| 8.0|
# +---+-----+----+
参考:https://walkenho.github.io/interpolating-time-series-p2-spark/
https://stackoverflow.com/questions/42411184/filling-gaps-in-timeseries-spark
或者 https://stackoverflow.com/questions/39271374/pyspark-how-to-resample-frequencies
import random
data = {'readtime' : pd.date_range(start='1/15/2018', end='02/14/2018', freq='D')\
.append(pd.date_range(start='1/15/2018', end='02/14/2018', freq='D')),
'house' : ['house1' for i in range(31)] + ['house2' for i in range(31)],
'readvalue': [0.5+0.5*np.sin(2*np.pi/30*i) for i in range(31)]\
+ [0.5+0.5*np.cos(2*np.pi/30*i) for i in range(31)]}
df0 = pd.DataFrame(data, columns = ['readtime', 'house', 'readvalue'])
random.seed(42)
df0 = df0.drop(random.sample(range(df0.shape[0]), k=int(df0.shape[0]/2)))
df0.head()
readtime house readvalue
2 2018-01-17 house1 0.703368
5 2018-01-20 house1 0.933013
7 2018-01-22 house1 0.997261
8 2018-01-23 house1 0.997261
14 2018-01-29 house1 0.603956
import pyspark.sql.functions as func
from pyspark.sql.functions import col
df = spark.createDataFrame(df0)
df = df.withColumn("readtime", col('readtime')/1e9)\
.withColumn("readtime_existent", col("readtime"))
df.show(10, False)
+-----------+------+--------------------+-----------------+
|readtime |house |readvalue |readtime_existent|
+-----------+------+--------------------+-----------------+
|1.5161472E9|house1|0.7033683215379001 |1.5161472E9 |
|1.5164064E9|house1|0.9330127018922193 |1.5164064E9 |
|1.5165792E9|house1|0.9972609476841366 |1.5165792E9 |
|1.5166656E9|house1|0.9972609476841368 |1.5166656E9 |
|1.517184E9 |house1|0.6039558454088798 |1.517184E9 |
|1.5172704E9|house1|0.5000000000000001 |1.5172704E9 |
|1.5174432E9|house1|0.2966316784621001 |1.5174432E9 |
|1.5175296E9|house1|0.2061073738537635 |1.5175296E9 |
|1.5177024E9|house1|0.06698729810778081 |1.5177024E9 |
|1.5177888E9|house1|0.024471741852423234|1.5177888E9 |
+-----------+------+--------------------+-----------------+
only showing top 10 rows
三步实现填充时间gap:
In the first step, we group the data by ‘house’ and generate an array containing an equally spaced time grid for each house.
In the second step, we create one row for each element of the arrays by using the spark SQL function explode().
In the third step, the resulting structure is used as a basis to which the existing read value information is joined using an outer left join.
from pyspark.sql.types import *
# define function to create date range
def date_range(t1, t2, step=60*60*24):
"""Return a list of equally spaced points between t1 and t2 with stepsize step."""
return [t1 + step*x for x in range(int((t2-t1)/step)+1)]
# define udf
date_range_udf = func.udf(date_range, ArrayType(LongType()))
# obtain min and max of time period for each house
df_base = df.groupBy('house')\
.agg(func.min('readtime').cast('integer').alias('readtime_min'),
func.max('readtime').cast('integer').alias('readtime_max'))
# generate timegrid and explode
df_base = df_base.withColumn("readtime", func.explode(date_range_udf("readtime_min", "readtime_max")))\
.drop('readtime_min', 'readtime_max')
# left outer join existing read values
df_all_dates = df_base.join(df, ["house", "readtime"], "leftouter")
tmp = df_all_dates.withColumn('readtime', func.from_unixtime(col('readtime')))
tmp.orderBy('house','readtime').show(20, False)
+------+-------------------+--------------------+-----------------+
|house |readtime |readvalue |readtime_existent|
+------+-------------------+--------------------+-----------------+
|house1|2018-01-17 08:00:00|0.7033683215379001 |1.5161472E9 |
|house1|2018-01-18 08:00:00|null |null |
|house1|2018-01-19 08:00:00|null |null |
|house1|2018-01-20 08:00:00|0.9330127018922193 |1.5164064E9 |
|house1|2018-01-21 08:00:00|null |null |
|house1|2018-01-22 08:00:00|0.9972609476841366 |1.5165792E9 |
|house1|2018-01-23 08:00:00|0.9972609476841368 |1.5166656E9 |
|house1|2018-01-24 08:00:00|null |null |
|house1|2018-01-25 08:00:00|null |null |
|house1|2018-01-26 08:00:00|null |null |
|house1|2018-01-27 08:00:00|null |null |
|house1|2018-01-28 08:00:00|null |null |
|house1|2018-01-29 08:00:00|0.6039558454088798 |1.517184E9 |
|house1|2018-01-30 08:00:00|0.5000000000000001 |1.5172704E9 |
|house1|2018-01-31 08:00:00|null |null |
|house1|2018-02-01 08:00:00|0.2966316784621001 |1.5174432E9 |
|house1|2018-02-02 08:00:00|0.2061073738537635 |1.5175296E9 |
|house1|2018-02-03 08:00:00|null |null |
|house1|2018-02-04 08:00:00|0.06698729810778081 |1.5177024E9 |
|house1|2018-02-05 08:00:00|0.024471741852423234|1.5177888E9 |
+------+-------------------+--------------------+-----------------+
only showing top 20 rows
参考:https://www.arundhaj.com/blog/calculate-difference-with-previous-row-in-pyspark.html
from pyspark import SparkContext
from pyspark.sql import SQLContext
from pyspark.sql import functions as F
from pyspark.sql.window import Window
sc = SparkContext(appName="PrevRowDiffApp")
sqlc = SQLContext(sc)
rdd = sc.parallelize([(1, 65), (2, 66), (3, 65), (4, 68), (5, 71)])
df = sqlc.createDataFrame(rdd, ["id", "value"])
my_window = Window.partitionBy().orderBy("id")
df = df.withColumn("prev_value", F.lag(df.value).over(my_window))
df = df.withColumn("diff", F.when(F.isnull(df.value - df.prev_value), 0)
.otherwise(df.value - df.prev_value))
df.show()
+---+-----+----------+----+
| id|value|prev_value|diff|
+---+-----+----------+----+
| 1| 65| null| 0|
| 2| 66| 65| 1|
| 3| 65| 66| -1|
| 4| 68| 65| 3|
| 5| 71| 68| 3|
+---+-----+----------+----+
利用闭包:https://stackoverflow.com/questions/52843485/pyspark-pass-multiple-columns-along-with-an-argument-in-udf
def quantile_udf(q=0.5):
"""计算quantile
"""
def quantile_(arr):
return float(np.quantile(arr, q))
return F.udf(quantile_, DoubleType())
history_stat = history_stat.withColumn('quantile_025', quantile_udf(0.25)(F.col('date_diff_list')))\
.withColumn('quantile_05', quantile_udf(0.5)(F.col('date_diff_list')))\
.withColumn('quantile_075', quantile_udf(0.75)(F.col('date_diff_list')))
history_stat.show(2)
+---------------+-----------------+----------+----------+----------+------------------+-------------------+--------------------+------------+-----------+------------+
|cust_store_dkey|cust_product_dkey| first_day| last_day|sale_times|max_sales_interval|mean_sales_interval| date_diff_list|quantile_025|quantile_05|quantile_075|
+---------------+-----------------+----------+----------+----------+------------------+-------------------+--------------------+------------+-----------+------------+
| 560| 211|2017-12-10|2019-03-08| 180| 16| 2.5166666666666666|[0, 11, 4, 11, 1,...| 1.0| 1.0| 3.0|
| 560| 990|2016-12-30|2017-03-17| 20| 26| 3.85|[0, 1, 1, 1, 2, 3...| 1.0| 2.0| 4.0|
+---------------+-----------------+----------+----------+----------+------------------+-------------------+--------------------+------------+-----------+------------+
https://stackoverflow.com/questions/44773758/how-to-conditionally-replace-value-in-a-column-based-on-evaluation-of-expression
import numpy as np
df = spark.createDataFrame(
[(1, 1, None),
(1, 2, float(5)),
(1, 3, np.nan),
(1, 4, None),
(0, 5, float(10)),
(1, 6, float('nan')),
(0, 6, float('nan'))],
('session', "timestamp1", "id2"))
+-------+----------+----+
|session|timestamp1| id2|
+-------+----------+----+
| 1| 1|null|
| 1| 2| 5.0|
| 1| 3| NaN|
| 1| 4|null|
| 0| 5|10.0|
| 1| 6| NaN|
| 0| 6| NaN|
+-------+----------+----+
from pyspark.sql.functions import when
targetDf = df.withColumn("timestamp1", \
when(df["session"] == 0, 999).otherwise(df["timestamp1"]))
vector_udf = udf(lambda vector: vector.toArray().tolist(), ArrayType(FloatType()))
df = df.withColumn('col1', vector_udf('col2'))
需要注意的是,udf中的tolist()
是必须的, 因为spark中没有np.array
类型。类似的,当我们返回一个np.dtype
类型数据的时候,也需要使用float
或int
对其进行转换。
参考:https://stackoverflow.com/questions/40557577/pyspark-sparse-vectors-to-scipy-sparse-matrix
将spark sparse vector转换为scipy csr matrix如下:
import numpy as np
from scipy.sparse import vstack
import numpy as np
from scipy.sparse import csr_matrix
import torch
def as_matrix(vec):
data, indices = vec.values, vec.indices
shape = 1, vec.size
return csr_matrix((data, indices, np.array([0, vec.values.size])), shape)
# cv_cols表示spark中countvectorizer得到的稀疏矩阵
train_pd[csr_cols] = train_pd[cv_cols].applymap(lambda x: as_matrix(x))
# 上面的代码将每一行的spark sparse vector转换为了scipy csr matrix,
# 通过下面的代码可以将每一列的所有行csr matrix进行合并,得到一个大的csr matrix
csr_col1 = vstack(train_pd['csr_col1'])
通过上面的代码可以将sparse vector转换为scipy sparse matrix,具体地——scipy csr matrix。
下面我们再将scipy csr matrix转换为pytorch sparse tensor。
def sparse2tensor(tmpdf):
"""
tmpdf 表示一个scipy csr matrix,如上面得到的csr_col1。
"""
tmpdf_coo = vstack(tmpdf).tocoo()
# 下面代码中的torch.Size能保证转换为sparse tensor后维度一致
sptensor = torch.sparse.FloatTensor(torch.LongTensor([tmpdf_coo.row.tolist(), tmpdf_coo.col.tolist()]),
torch.FloatTensor(tmpdf_coo.data), torch.Size(tmpdf_coo.shape))
return sptensor
spt = sparse2tensor(csr_cols1)
当数据维度非常大且稀疏的时候,使用sparse matrix/tensor能极大的减少内存占用,是一个非常实用的方法。
def sum_vector(vector):
return float(vector.values.sum())
df = df.withColumn('ttl2',
Func.from_unixtime(col("ttl").cast('float') / 1000.0 , 'yyyyMMdd'))
在进行label encoder的时候,一般使用stringIndex函数。但是有时候由于类别数太多,达到几千万上亿,如对推荐的MF中ID的编码,此时仍然使用stringIndex容易内存溢出,因为这几千万个字符要进行序列化并传播需要较大的机器内存。这时候我们就需要使用其他的方法来进行编码了。
一种方法是借鉴window函数,以id作为key进行分window并对每个window赋一个值:
# 原数据如下:
id | col |
1 | a |
2 | a |
3 | b |
4 | c |
5 | c |
from pyspark.sql import window as W
import pyspark.sql.functions as f
df.select('id', f.dense_rank().over(W.Window.orderBy('col')).alias('group')).show(truncate=False)
# 结果如下:
+---+-----+
|id |group|
+---+-----+
|1 |1 |
|2 |1 |
|3 |2 |
|4 |3 |
|5 |3 |
+---+-----+
此外,还有一种方法是借用window的row_number函数,先给每一个唯一id编码,然后进行join:
df2 = data.select("col").distinct()
.withColumn("group", row_number().over(Window.orderBy("col")))
result = data.join(df2, on="col", how="inner")