基于opencv的小球追踪(颜色追踪)的python实现

程序参考:树莓派视觉小车 – 小球追踪(颜色追踪)(OpenCV色彩空间HSV)https://car.inotgo.com/2021/11/20211108230409934Q.html
树莓派算力有限,现在使用手机摄像头充当电脑的无线摄像头,通过手机安装于树莓派小车上实现图像采集,在电脑端进行视觉处理,后期实现计算机控制小车运行实现小球追踪。

  1. 效果展示
    基于opencv的小球追踪(颜色追踪)的python实现_第1张图片
  2. 理论基础
    为什么用HSV空间而不是RGB空间?
    因为RGB通道并不能很好地反映出物体具体的颜色信息。
    而HSV空间能够非常直观的表达色彩的明暗、色调、以及鲜艳程度,方便进行颜色之间的对比。(RGB受光线影响很大,所以采取HSV)
    这里用HSV的目的:得到合适的二值图。
    Hue:色相(具体的颜色),Value(明度),Saturation(饱和度)
  3. 程序及介绍

import numpy as np
import cv2


def nothing(*arg):#创建回调函数
    pass


def Trackbar_Init():
    # 1 create windows 窗口设置(名称)
    cv2.namedWindow('h_binary')
    cv2.namedWindow('s_binary')
    cv2.namedWindow('v_binary')
    # 2 Create Trackbar 滑动条设置
    cv2.createTrackbar('hmin', 'h_binary', 86, 179, nothing)
    cv2.createTrackbar('hmax', 'h_binary', 100, 179, nothing)
    cv2.createTrackbar('smin', 's_binary', 80, 255, nothing)
    cv2.createTrackbar('smax', 's_binary', 213, 255, nothing)
    cv2.createTrackbar('vmin', 'v_binary', 180, 255, nothing)
    cv2.createTrackbar('vmax', 'v_binary', 255, 255, nothing)
    # 创建滑动条 滑动条值名称 窗口名称 滑动条值 滑动条阈值 回调函数


def Get_HSV(image):
    # 1 get trackbar's value 获取滑动条的值
    hmin = cv2.getTrackbarPos('hmin', 'h_binary')
    hmax = cv2.getTrackbarPos('hmax', 'h_binary')
    smin = cv2.getTrackbarPos('smin', 's_binary')
    smax = cv2.getTrackbarPos('smax', 's_binary')
    vmin = cv2.getTrackbarPos('vmin', 'v_binary')
    vmax = cv2.getTrackbarPos('vmax', 'v_binary')
    # 2 to HSV 转HSV(三通道:H、S、V)
    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
    cv2.imshow('hsv', hsv)
    h, s, v = cv2.split(hsv)
    # 3 set threshold (binary image)  转二值图(单通道阈值处理)
    # if value in (min, max):white; otherwise:black
    h_binary = cv2.inRange(np.array(h), np.array(hmin), np.array(hmax))
    s_binary = cv2.inRange(np.array(s), np.array(smin), np.array(smax))
    v_binary = cv2.inRange(np.array(v), np.array(vmin), np.array(vmax))
    # 4 get binary(对H、S、V三个通道分别与操作)
    binary = cv2.bitwise_and(h_binary, cv2.bitwise_and(s_binary, v_binary))
    # 5 Show
    cv2.imshow('h_binary', h_binary)
    cv2.imshow('s_binary', s_binary)
    cv2.imshow('v_binary', v_binary)
    cv2.imshow('binary', binary)
    return binary


def Image_Processing():
    global h, s, v
    # 1 Capture the frames 打开摄像头
    ret, frame = camera.read()
    image = frame
    cv2.imshow('frame', frame)
    # 2 get HSV 获取HSV色彩空间得到的二值图(步骤四的HSV处理)
    binary = Get_HSV(frame)
    # 3 Gausi blur 高斯滤波
    blur = cv2.GaussianBlur(binary,(9,9),0)
    # 4 Open 开运算(去噪)
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9,9))
    Open = cv2.morphologyEx(blur, cv2.MORPH_OPEN, kernel)
    cv2.imshow('Open',Open)
    # 5 Close 闭运算
    Close = cv2.morphologyEx(Open, cv2.MORPH_CLOSE, kernel)
    cv2.imshow('Close',Close)
    # 6 Hough Circle detect 霍夫圆检测
    circles = cv2.HoughCircles(Close,cv2.HOUGH_GRADIENT,2,120,param1=120,param2=20,minRadius=20,maxRadius=0)
    # param2:决定圆能否被检测到(越少越容易检测到圆,但相应的也更容易出错)
    # judge if circles is exist
    if circles is not None:
        # 1 获取圆的圆心和半径
        x, y, r = int(circles[0][0][0]),int(circles[0][0][1]),int(circles[0][0][2])
        print(x, y, r)
        # 2 画圆
        cv2.circle(image, (x, y), r, (255,0,255),5)
        cv2.imshow('image', image)
    else:
        (x,y),r = (0,0), 0
    return (x,y), r


width, height = 640, 480
camera = cv2.VideoCapture(0)
camera.set(3, width)
camera.set(4, height)

if __name__ == '__main__':
    Trackbar_Init()
    while True:
        (x, y), r = Image_Processing()
        #后期可以在这里插入一个move((x,y),r)函数,对应小球所在位置及大小采取相应的运动策略
        if cv2.waitKey(1) & 0xFF == ord('q'):  # 按q键退出
            break

你可能感兴趣的:(opencv,python,计算机视觉)