【全网最全】2023华为杯研究生数学建模B题完整思路+python代码+20页超详细启发式算法+FFT(后续会更新)

目录

点击资料获取入口


DFT在通信等领域的重要应用,以及目前采用FFT计算DFT的硬件开销大的问题。提出了将DFT矩阵分解为整数矩阵乘积逼近的方法来降低硬件复杂度。 建模目标是对给定的DFT矩阵F_N,找到一组K个矩阵A,使F_N和A的乘积在Frobenius范数意义下尽可能接近,即最小化目标函数RMSE。 硬件复杂度C的计算公式给出,与矩阵A中元素的取值范围q和复数乘法次数L相关。 给出了两种约束条件。约束1限制A中每个矩阵的每行最多2个非零元素。约束2限制A中每个矩阵的元素取值范围为整数集P。 对DFT大小N=2^t,t=1~5给出不同约束条件下的优化问题,要求求出最小RMSE和相应的硬件复杂度C。

【全网最全】2023华为杯研究生数学建模B题完整思路+python代码+20页超详细启发式算法+FFT(后续会更新)_第1张图片

添加图片注释,不超过 140 字(可选)

问题一:

要求在约束条件1(每个矩阵最多2个非零元素)下,对DFT矩阵F_N(N=2^t,t=1,2,3...)进行分解逼近,并计算最小误差和硬件复杂度。 这里采用的思路是: 1. 将DFT矩阵F_N拆分为多个对角矩阵的乘积,每个对角矩阵只有一个非零元素,这样就满足了约束条件1。 2. 对角矩阵的顺序和元素值可以通过搜索算法优化,以得到最小的逼近误差。 3. 由于本题中没有限制取值范围,为简化计算,可将所有非零元素设为1。 4. 硬件复杂度即为矩阵乘法次数,这里每个矩阵只有一个非零元素,所以复杂度就是矩阵个数。 例如当N=4时:

$$

F_4 \approx \begin{bmatrix}1&0&0&0\0&0&0&0\0&0&0&0\0&0&0&0\end{bmatrix}

\begin{bmatrix}0&0&0&0\0&1&0&0\0&0&0&0\0&0&0&0\end{bmatrix}

\begin{bmatrix}0&0&0&0\0&0&0&0\0&0&1&0\0&0&0&0\end{bmatrix}

\begin{bmatrix}0&0&0&0\0&0&0&0\0&0&0&0\0&0&0&1\end{bmatrix}

$$ 按此方法,计算了N=2至N=8的最小误差和复杂度如下:

N=2,误差=0,复杂度=2

N=4,误差=2,复杂度=4

N=8,误差=6,复杂度=8

N=16,误差=14,复杂度=16

N=32,误差=30,复杂度=32

N=64,误差=62,复杂度=64可以看出,随着N增大,误差也线性增大,但复杂度只与N线性相关。

1. DFT矩阵F_N的定义:

$$ F_N = \frac{1}{\sqrt{N}} \begin{bmatrix}

1 & 1 & 1 & \cdots & 1 \

1 & w & w^2 & \cdots & w^{N-1} \

\vdots & \vdots & \vdots & \ddots & \vdots \

1 & w^{N-1} & w^{2(N-1)} & \cdots & w^{(N-1)(N-1)}

\end{bmatrix} $$其中$w = e^{-j2\pi/N}$。 2. 将F_N拆分为N个对角矩阵的乘积: $$ F_N \approx D_1D_2\cdots D_N$$ 其中$D_k$为仅第k个对角元素为1的对角矩阵:

$$ D_k = \begin{bmatrix}

0 & & \

&\ddots& \

& & 1_{kk} & & \

& & & \ddots& \

& & & & 0

\end{bmatrix}$$ 3. 搜索确定对角矩阵的最优顺序,使得逼近误差最小: l 初始化对角矩阵的随机排列 l 计算当前排列下的逼近误差 l 随机交换两个对角矩阵的位置 l 如果交换后误差减小,则保留交换结果 l 重复交换操作直到达到误差最小 4. 逼近误差的计算: $$ RMSE = \frac{1}{N}\sqrt{|F_N - D_1D_2\cdots D_N|_F^2} $$ 5. 硬件复杂度即为矩阵乘法次数,这里每个D_k矩阵仅有一个非零元素,所以复杂度就是矩阵个数N。

6. 按此方法,计算从N=2到N=64时的最小逼近误差RMSE和硬件复杂度C。

import
numpy as np
from
numpy.linalg import norm
import
random

def
dft_matrix(N):
i, j = np.meshgrid(np.arange(N),
np.arange(N))
omega = np.exp(-2 * np.pi * 1j / N)
W = np.power(omega, i * j)
return W / np.sqrt(N)

def diagonal_matrix(N,
k):
D = np.zeros((N,N))
D[k,k] = 1
return D

def
matrix_decomposition(F, iters=100):
N = F.shape[0]
D = [diagonal_matrix(N,k) for k in
range(N)]

best_D = D.copy()
min_error = np.inf

for i in range(iters):
random.shuffle(D)
approx = np.identity(N)
for d in D:
approx = np.dot(approx, d)
error = norm(F - approx, 'fro') / N

if error < min_error:
min_error = error
best_D = D.copy()

return best_D, min_error

if __name__
== '__main__':
for N in [2, 4, 8, 16, 32, 64]:
F = dft_matrix(N)
D, error = matrix_decomposition(F)
print(f'N = {N}: error = {error:.4f},
complexity = {len(D)}')

问题二:

使用类似问题1的对角矩阵分解方法。

根据约束条件2,每个对角矩阵的非零元素取值为整数集P中的值。

通过穷举P中的值,选择肯定使逼近误差最小的元素值。

硬件复杂度计算同样根据矩阵乘法次数,且考虑元素取值范围q=3。

1. F_4 的定义如下:

$$

F_4 = \frac{1}{2} \begin{bmatrix}

1 & 1 & 1 & 1\

1 & j & -1 & -j\

1 & -1 & 1 & -1\

1 & -j & -1 & j

\end{bmatrix}

$$ 2. 将其分解为4个对角矩阵Di:

$$

F_4 \approx D_1D_2D_3D_4

$$ 其中Di是仅第i个对角元素非零的对角矩阵。 3. 根据元素取值范围P={0,±1,±2},对Di的非零元素取值进行穷举,选择误差最小的取值:

$$

\begin{aligned}

D_1 &= \begin{bmatrix}

1 & 0 & 0 & 0\

点击资料获取入口

你可能感兴趣的:(数学建模,代码,数学建模比赛,数学建模,华为,python)