ImageFolder 一个通用的数据加载器

torchvision.datasets的子类,用于加载数据。
默认数据集已经自觉按照要分配的类型分成了不同的文件夹,一种类型的文件夹下面只存放一种类型的图片。
举例说明:ImageFolder 一个通用的数据加载器_第1张图片
ImageFolder 一个通用的数据加载器_第2张图片
数据分为cat和dog两类,各自在各自类的文件夹里。

import torchvision.datasets as dset
dataset = dset.ImageFolder('./data/dogcat_2') #没有transform,先看看取得的原始图像数据
print(dataset.classes)  #根据分的文件夹的名字来确定的类别
print(dataset.class_to_idx) #按顺序为这些类别定义索引为0,1...
print(dataset.imgs) #返回从所有文件夹中得到的图片的路径以及其类别

返回

['cat', 'dog']
{'cat': 0, 'dog': 1}
[('./data/dogcat_2/cat/cat.12484.jpg', 0), ('./data/dogcat_2/cat/cat.12485.jpg', 0), ('./data/dogcat_2/cat/cat.12486.jpg', 0), ('./data/dogcat_2/cat/cat.12487.jpg', 0), ('./data/dogcat_2/dog/dog.12496.jpg', 1), ('./data/dogcat_2/dog/dog.12497.jpg', 1), ('./data/dogcat_2/dog/dog.12498.jpg', 1), ('./data/dogcat_2/dog/dog.12499.jpg', 1)]

如果在数据下面又添加了一个类型’others’,那么访问类型的时候返回的就是:

['cat', 'dog', 'others']
{'cat': 0, 'dog': 1, 'others': 2}

然后定义一个对数据进行处理的transform:

#可以看出来此时得到的图片数据已经是处理过后的tensor数据了
print(dataset[0][0])
print(dataset[0][0].size()) #大小也是经过设定后的大小224
print(dataset[0][1]) #得到的是类别0,即cat

指路:
https://www.cnblogs.com/wanghui-garcia/p/10649364.html.

你可能感兴趣的:(学习)