2024年天津专升本文化课考试高等数学新大纲(2023年9月修订)

天津市高等院校“高职升本科”招生统一考试高等数学考试大纲(2023年9月修订)

一、考试性质

天津市高等院校“高职升本科”招生统一考试是由合格的高职高专毕业生参加的选拔性

考试.高等院校根据考生的成绩,按照已确定的招生计划,择优录取.因此,考试应该具有较高的信度、效度、适当的难度和必要的区分度.

2024年天津专升本文化课考试高等数学新大纲(2023年9月修订)_第1张图片

二、考试内容与基本要求

(一)能力要求

高等数学考试是对考生思维能力、运算能力和实践能力的考查.

思维能力表现为对问题进行分析、综合,科学推理,并能准确地表述.数学思维能力表

现为以数学知识为素材,通过归纳抽象、符号表示、运算求解、演绎证明和空间想象等诸方

面对客观事物的空间形式和数量关系进行思考和判断.

运算能力表现为根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件,

寻找与设计合理、简洁的运算途径.运算包括对数字的计算,对式子的组合变形与分解变形,

对几何图形各几何量的计算求解等.

实践能力表现为综合应用所学基本概念、基本理论等数学知识、数学思想和方法解决生

产、生活和相关学科中的简单数学问题.

(二)内容与要求

《高等数学》科目考试要求考生掌握必要的基本概念、基础理论、较熟练的运算能力,

在识记、理解和应用不同层次上达到普通高校(工科专业)专科生高等数学的基本要求,为

进一步学习奠定基础.

对考试内容的要求由低到高分为了解、理解、掌握、灵活和综合运用四个层次,且高一

级的层次要求包含低一级的层次要求.

了解(A):对所列知识内容有初步的认识,会在有关问题中进行识别和直接应用.

理解(B):对所列知识内容有理性的认识,能够解释、举例或变形、推断,并利用所列

知识解决简单问题.

掌握(C):对所列知识内容有较深刻的理性认识,形成技能,并能利用所列知识解决有

关问题.

灵活和综合运用(D):系统地把握知识的内在联系,并能运用相关知识分析、解决较复

杂的或综合性的问题.

具体内容与要求详见表1—表7.

1

考试内容

考试要求

A

B

C

D

函数概念的两个要素(定义域和对应规则)

分段函数

函数的奇偶性,单调性,周期性和有界性

反函数,复合函数

基本初等函数的性质和图像,初等函数

极限(含左、右极限)的定义

极限存在的充要条件

极限四则运算法则

两个重要极限

无穷大、无穷小的概念及相互关系,无穷小的性质

无穷小量的比较

用等价无穷小求极限

函数在一点处连续、间断的概念

间断点的类型:包括第一类间断点(可去间断点,跳跃间断点)及第二

类间断点

初等函数的连续性

闭区间上连续函数的性质(介值定理,零点定理和最大值、最小值定理)

考试内容

考试要求

A

B

C

D

导数的概念及其几何意义

可导性与连续性的关系

函数,极限,连续性

表1

一元函数微分学

表2

2

导数

微分

平面曲线的切线方程与法线方程

导数的基本公式,四则运算法则和复合函数的求导方法

微分的概念,微分的四则运算,可微与可导的关系

高阶导数的概念

显函数一、二阶导数及一阶微分的求法

隐函数及由参数方程所确定的函数的求导方法

由参数方程所确定的函数的二阶导数

中值

定理

导数

应用

罗尔定理和拉格朗日中值定理及推论

罗必达法则

未定型的极限

函数的单调性及判定

函数的极值及求法

函数曲线的凹凸性及判定,拐点的求法

函数的最大值、最小值

考试内容

考试要求

A

B

C

D

原函数的概念、原函数存在定理

不定积分的概念及性质

不定积分的第一、二类换元法,分部积分法

简单有理函数的积分

定积分的概念及其几何意义

定积分的基本性质

变上限函数及导数

一元函数积分学

表3

考试内容

考试要求

A

B

C

D

多元

函数

的极

限与

连续

多元函数的概念,二元函数的定义域

二元函数的极限与连续性

偏导

数与

全微

偏导数的概念

二元函数一、二阶偏导数的求法

求复合函数与隐函数的一阶偏导数(仅限一个方程确定的隐函数)

考试内容

考试要求

A

B

C

D

向量

代数

空间直角坐标系,向量的概念,向量的坐标表示法

单位向量及方向余弦

向量的线性运算,数量积和向量积运算

向量平行、垂直的充要条件

空间

解析

几何

平面的方程及其求法

空间直线的方程及其求法

平面、直线的位置关系(平行、垂直)

牛顿—莱布尼兹公式,定积分的换元法和分部积分法

定积

分的

应用

平面图形的面积

旋转体的体积

向量代数与空间解析几何

表4

多元函数微分学

表5

考试内容

考试要求

A

B

C

D

概念

常微分方程的解、通解、初始条件和特解的概念

一阶

方程

一阶可分离变量方程

一阶线性方程

二阶

方程

二阶常系数线性齐次微分方程

考试内容

考试要求

A

B

C

D

概念

计算

二重积分的概念及性质、几何意义

直角坐标系下计算二重积分

交换积分次序

极坐标系下计算二重积分

偏导

数的

应用

二元函数的全微分

二元函数的无条件极值

空间曲面的切平面方程和法线方程

二重积分

表6

常微分方程

表7

考试为闭卷、笔试,试卷满分为150分,考试限定用时为120分钟.

全卷包括I卷和II卷,I卷为选择题,II卷为非选择题.试题分选择题、填空题和解答

题三种题型.选择题是四选一类型的单项选择题;填空题只要求直接填写结果,不要求写出

计算过程或推证过程;解答题包括计算题、证明题和应用题等,解答题应写出文字说明、演

算步骤或证明过程.三种题型(选择题、填空题和解答题)题目数分别为6、6、5,整卷共

17道题;选择题和填空题约占总分的48%左右,解答题约占总分的52%左右,试卷包括容

5

易题、中等难度题和较难题,总体难度适当,以中等难度题为主.

四、题型示例

为了便于理解考试内容和要求,特编制下列题型示例,以供参考.所列样题力求体现试

题的各种题型及其难度,它与考试时试题的数目、题序安排、考查内容、难度没有对应关系.

(一)选择题

1.函数f(x)4x2ln(x1)的定义域为

A.[1,2]

B.(1,2]

C.(2,1)

D.[2,1)

答案:B

2.当x0时,与x等价的无穷小量是

A.tanx

B.2sinx

C.e2x1

D.ln(1x)

答案:A

dx0

costdt

3.

A.sinx2

答案:C

(二)填空题

x29

1.极限lim

x3x22x3

3

答案:

2

B.2xsinx2

_____________.

C.cosx2

D.2xcosx2

2.函数f(x)x2ex在x0处的二阶导数的值为_____________.

答案:3

3.函数zln(3xy)的全微分dz_____________.

答案:

3d xdy

3xy

(三)解答题

1.求二元函数f(x,y)x3y33xy5所有的极值点和极值

答案:

fx3x23y0,

解:由方程组2得驻点(0,0),(1,1).

fy3y3x0

又Afxx6x,Bfxyfyx3,Cfyy6y.

对于驻点(0,0):A0,B3,C0,由B2AC90知(0,0)不是极值点.

6

对于驻点(1,1):A6,B3,C6,由B2AC270且A0知(1,1)是极小

值点,极小值f(1,1)4.

因此,函数f(x,y)有极小值点(1,1),极小值为4.

x2t1,

x3  y1  z1

2.求通过直线l1:y3t2,和直线l2:的平面的方程.

z2t3232

答案:

解:由题意知l1和l2的方向向量s1=s2=(2,3,2),取直线l1上一点P1(-1,2,-3),取

直线l2上一点P2(3,-1,1),

则平面的法向量

ijk



n=s1´P1P2=232=18(1,0,-1),

4-34

故平面的方程为(x1)(z3)0,整理得xz20.

你可能感兴趣的:(天津专升本,微信开放平台)