CountDownLatch就是JUC包下的一个工具,整个工具最核心的功能就是计数器。
如果有三个业务需要并行处理,并且需要知道三个业务全部都处理完毕了。
需要一个并发安全的计数器来操作。
CountDownLatch就可以实现。
给CountDownLatch设置一个数值。可以设置3。
每个业务处理完毕之后,执行一次countDown方法,指定的3每次在执行countDown方法时,对3进行-1。
主线程可以在业务处理时,执行await,主线程会阻塞等待任务处理完毕。
当设置的3基于countDown方法减为0之后,主线程就会被唤醒,继续处理后续业务。
当咱们的业务中,出现2个以上允许并行处理的任务,并且需要在任务都处理完毕后,再做其他处理时,可以采用CountDownLatch去实现这个功能。
模拟有三个任务需要并行处理,在三个任务全部处理完毕后,再执行后续操作
CountDownLatch中,执行countDown方法,代表一个任务结束,对计数器 - 1
执行await方法,代表等待计数器变为0时,再继续执行
执行await(time,unit)方法,代表等待time时长,如果计数器不为0,返回false,如果在等待期间,计数器为0,方法就返回true
一般CountDownLatch更多的是基于业务去构建,不采用成员变量。
static ThreadPoolExecutor executor = (ThreadPoolExecutor) Executors.newFixedThreadPool(3);
static CountDownLatch countDownLatch = new CountDownLatch(3);
public static void main(String[] args) throws InterruptedException {
System.out.println("主业务开始执行");
sleep(1000);
executor.execute(CompanyTest::a);
executor.execute(CompanyTest::b);
executor.execute(CompanyTest::c);
System.out.println("三个任务并行执行,主业务线程等待");
// 死等任务结束
// countDownLatch.await();
// 如果在规定时间内,任务没有结束,返回false
if (countDownLatch.await(10, TimeUnit.SECONDS)) {
System.out.println("三个任务处理完毕,主业务线程继续执行");
}else{
System.out.println("三个任务没有全部处理完毕,执行其他的操作");
}
}
private static void a() {
System.out.println("A任务开始");
sleep(1000);
System.out.println("A任务结束");
countDownLatch.countDown();
}
private static void b() {
System.out.println("B任务开始");
sleep(1500);
System.out.println("B任务结束");
countDownLatch.countDown();
}
private static void c() {
System.out.println("C任务开始");
sleep(2000);
System.out.println("C任务结束");
countDownLatch.countDown();
}
private static void sleep(long timeout){
try {
Thread.sleep(timeout);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
保证CountDownLatch就是一个计数器,没有什么特殊的功能,查看源码也只是查看计数器实现的方式
发现CountDownLatch的内部类Sync继承了AQS,CountDownLatch就是基于AQS实现的计数器。
AQS就是一个state属性,以及AQS双向链表
猜测计数器的数值实现就是基于state去玩的。
主线程阻塞的方式,也是阻塞在了AQS双向链表中。
就是构建内部类Sync,并且给AQS中的state赋值
// CountDownLatch的有参构造
public CountDownLatch(int count) {
// 健壮性校验
if (count < 0) throw new IllegalArgumentException("count < 0");
// 构建内部类,Sync传入count
this.sync = new Sync(count);
}
// AQS子类,Sync的有参构造
Sync(int count) {
// 就是给AQS中的state赋值
setState(count);
}
await方法就时判断当前CountDownLatch中的state是否为0,如果为0,直接正常执行后续任务
如果不为0,以共享锁的方式,插入到AQS的双向链表,并且挂起线程
// 一般主线程await的方法,阻塞主线程,等待state为0
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
// 执行了AQS的acquireSharedInterruptibly方法
public final void acquireSharedInterruptibly(int arg) throws InterruptedException {
// 判断线程是否中断,如果中断标记位是true,直接抛出异常
if (Thread.interrupted())
throw new InterruptedException();
if (tryAcquireShared(arg) < 0)
// 共享锁挂起的操作
doAcquireSharedInterruptibly(arg);
}
// tryAcquireShared在CountDownLatch中的实现
protected int tryAcquireShared(int acquires) {
// 查看state是否为0,如果为0,返回1,不为0,返回-1
return (getState() == 0) ? 1 : -1;
}
private void doAcquireSharedInterruptibly(int arg) throws InterruptedException {
// 封装当前先成为Node,属性为共享锁
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
// 在这,就需要挂起当前线程。
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
countDown方法本质就是对state - 1,如果state - 1后变为0,需要去AQS的链表中唤醒挂起的节点
// countDown对计数器-1
public void countDown() {
// 是-1。
sync.releaseShared(1);
}
// AQS提供的功能
public final boolean releaseShared(int arg) {
// 对state - 1
if (tryReleaseShared(arg)) {
// state - 1后,变为0,执行doReleaseShared
doReleaseShared();
return true;
}
return false;
}
// CountDownLatch的tryReleaseShared实现
protected boolean tryReleaseShared(int releases) {
// 死循环是为了避免CAS并发问题
for (;;) {
// 获取state
int c = getState();
// state已经为0,直接返回false
if (c == 0)
return false;
// 对获取到的state - 1
int nextc = c-1;
// 基于CAS的方式,将值赋值给state
if (compareAndSetState(c, nextc))
// 赋值完,发现state为0了。此时可能会有线程在await方法处挂起,那边挂起,需要这边唤醒
return nextc == 0;
}
}
// 如何唤醒在await方法处挂起的线程
private void doReleaseShared() {
// 死循环
for (;;) {
// 拿到head
Node h = head;
// head不为null,有值,并且head != tail,代表至少2个节点
// 一个虚拟的head,加上一个实质性的Node
if (h != null && h != tail) {
// 说明AQS队列中有节点
int ws = h.waitStatus;
// 如果head节点的状态为 -1.
if (ws == Node.SIGNAL) {
// 先对head节点将状态从-1,修改为0,避免重复唤醒的情况
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
continue;
// 正常唤醒节点即可,先看head.next,能唤醒就唤醒,如果head.next有问题,从后往前找有效节点
unparkSuccessor(h);
}
// 会在Semaphore中谈到这个位置
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue;
}
// 会在Semaphore中谈到这个位置
if (h == head)
break;
}
}
从名字上来看CyclicBarrier,就是代表循环屏障
Barrier屏障:让一个或多个线程达到一个屏障点,会被阻塞。屏障点会有一个数值,当达到一个线程阻塞在屏障点时,就会对屏障点的数值进行-1操作,当屏障点数值减为0时,屏障就会打开,唤醒所有阻塞在屏障点的线程。在释放屏障点之后,可以先执行一个任务,再让所有阻塞被唤醒的线程继续之后后续任务。
Cyclic循环:所有线程被释放后,屏障点的数值可以再次被重置。
CyclicBarrier一般被称为栅栏。
CyclicBarrier是一种同步机制,允许一组线程互相等待。现成的达到屏障点其实是基于await方法在屏障点阻塞。
CyclicBarrier并没有基于AQS实现,他是基于ReentrantLock锁的机制去实现了对屏障点–,以及线程挂起的操作。(CountDownLatch本身是基于AQS,对state进行release操作后,可以-1)
CyclicBarrier没来一个线程执行await,都会对屏障数值进行-1操作,每次-1后,立即查看数值是否为0,如果为0,直接唤醒所有的互相等待线程。
CyclicBarrier对比CountDownLatch区别
CyclicBarrier:多个线程互相等待,直到到达同一个同步点,再一次执行。
出国旅游。
导游小姐姐需要等待所有乘客都到位后,发送护照,签证等等文件,再一起出发
比如Tom,Jack,Rose三个人组个团出门旅游
在构建CyclicBarrier可以指定barrierAction,可以选择性指定,如果指定了,那么会在barrier归0后,优先执行barrierAction任务,然后再去唤醒所有阻塞挂起的线程,并行去处理后续任务。
所有互相等待的线程,可以指定等待时间,并且在等待的过程中,如果有线程中断,所有互相的等待的线程都会被唤醒。
如果在等待期间,有线程中断了,唤醒所有线程后,CyclicBarrier无法继续使用。
如果线程中断后,需要继续使用当前的CyclicBarrier,需要调用reset方法,让CyclicBarrier重置。
如果CyclicBarrier的屏障数值到达0之后,他默认会重置屏障数值,CyclicBarrier在没有线程中断时,是可以重复使用的。
public static void main(String[] args) throws InterruptedException {
CyclicBarrier barrier = new CyclicBarrier(3,() -> {
System.out.println("等到各位大佬都到位之后,分发护照和签证等内容!");
});
new Thread(() -> {
System.out.println("Tom到位!!!");
try {
barrier.await();
} catch (Exception e) {
System.out.println("悲剧,人没到齐!");
return;
}
System.out.println("Tom出发!!!");
}).start();
Thread.sleep(100);
new Thread(() -> {
System.out.println("Jack到位!!!");
try {
barrier.await();
} catch (Exception e) {
System.out.println("悲剧,人没到齐!");
return;
}
System.out.println("Jack出发!!!");
}).start();
Thread.sleep(100);
new Thread(() -> {
System.out.println("Rose到位!!!");
try {
barrier.await();
} catch (Exception e) {
System.out.println("悲剧,人没到齐!");
return;
}
System.out.println("Rose出发!!!");
}).start();
/*
tom到位,jack到位,rose到位
导游发签证
tom出发,jack出发,rose出发
*/
}
分成两块内容去查看,首先查看CyclicBarrier的一些核心属性,然后再查看CyclicBarrier的核心方法
public class CyclicBarrier {
// 这个静态内部类是用来标记是否中断的
private static class Generation {
boolean broken = false;
}
/** CyclicBarrier是基于ReentrantLock实现的互斥操作,以及计数原子性操作 */
private final ReentrantLock lock = new ReentrantLock();
/** 基于当前的Condition实现线程的挂起和唤醒 */
private final Condition trip = lock.newCondition();
/** 记录有参构造传入的屏障数值,不会对这个数值做操作 */
private final int parties;
/** 当屏障数值达到0之后,优先执行当前任务 */
private final Runnable barrierCommand;
/** 初始化默认的Generation,用来标记线程中断情况 */
private Generation generation = new Generation();
/** 每来一个线程等待,就对count进行-- */
private int count;
}
掌握构建CyclicBarrier之后,内部属性的情况
// 这个是CyclicBarrier的有参构造
// 在内部传入了parties,屏障点的数值
// 还传入了barrierAction,屏障点的数值达到0,优先执行barrierAction任务
public CyclicBarrier(int parties, Runnable barrierAction) {
// 健壮性判
if (parties