如果是成千万破亿那就得重新设计了,数据库的分库分表、队列改成用kafka、redis增加集群数量等手段。
1、超卖问题
假如备货只有100个,但是最终超卖了200,一般来讲秒杀系统的价格都比较低,如果超卖将严重影响公司的财产利益,因此首当其冲的就是解决商品的超卖问题。
2、高并发
秒杀具有时间短、并发量大的特点,秒杀持续时间只有几分钟,而一般公司都为了制造轰动效应,会以极低的价格来吸引用户,因此参与抢购的用户会非常的多。短时间内会有大量请求涌进来,后端如何防止并发过高造成缓存击穿或者失效,击垮数据库都是需要考虑的问题。
单台redis服务器可承受的QPS大概是4W左右,如果一个秒杀吸引的用户量足够多的话,单QPS可能达到几十万,单体redis还是不足以支撑如此巨大的请求量。缓存会被击穿,直接渗透到DB,从而击垮mysql.后台会将会大量报错。
秒杀是一个读多写少的场景,使用redis做缓存再合适不过。不过考虑到缓存击穿问题,我们应该构建redis集群,采用哨兵模式,可以提升redis的性能和可用性。
3、接口防刷
现在的秒杀大多都会出来针对秒杀对应的软件,这类软件会模拟不断向后台服务器发起请求,一秒几百次都是很常见的,如何防止这类软件的重复无效请求,防止不断发起的请求也是需要我们针对性考虑的。
秒杀最终的本质是数据库的更新,但是有很多大量无效的请求,我们最终要做的就是如何把这些无效的请求过滤掉,防止渗透到数据库。限流的话,需要入手的方面很多:
前端限流:首先第一步就是通过前端限流,用户在秒杀按钮点击以后发起请求,那么在接下来的5秒是无法点击(通过设置按钮为disable)。这一小举措开发起来成本很小,但是很有效。
同一个用户xx秒内重复请求直接拒绝:具体多少秒需要根据实际业务和秒杀的人数而定,一般限定为10秒。具体的做法就是通过redis的键过期策略,首先对每个请求都从String value = redis.get(userId);如果获取到这个value为空或者为null,表示它是有效的请求,然后放行这个请求。如果不为空表示它是重复性请求,直接丢掉这个请求。如果有效,采用redis.setexpire(userId,value,10).value可以是任意值,一般放业务属性比较好,这个是设置以userId为key,10秒的过期时间(10秒后,key对应的值自动为null)
4、秒杀url
对于普通用户来讲,看到的只是一个比较简单的秒杀页面,在未达到规定时间,秒杀按钮是灰色的,一旦到达规定时间,灰色按钮变成可点击状态。这部分是针对小白用户的,如果是稍微有点电脑功底的用户,会通过F12看浏览器的network看到秒杀的url,通过特定软件去请求也可以实现秒杀。或者提前知道秒杀url的人,一请求就直接实现秒杀了。这个问题我们需要考虑解决
需要将秒杀的url实现动态化,即使是开发整个系统的人都无法在秒杀开始前知道秒杀的url。具体的做法就是通过md5加密一串随机字符作为秒杀的url,然后前端访问后台获取具体的url,后台校验通过之后才可以继续秒杀。
5、数据库设计
秒杀有把我们服务器击垮的风险,如果让它与我们的其他业务使用在同一个数据库中,耦合在一起,就很有可能牵连和影响其他的业务。如何防止这类问题发生,就算秒杀发生了宕机、服务器卡死问题,也应该让他尽量不影响线上正常进行的业务
因此应该单独设计一个秒杀数据库,防止因为秒杀活动的高并发访问拖垮整个网站。这里只需要两张表,一张是秒杀订单表,一张是秒杀货品表
redis预减库存:很多请求进来,都需要后台查询库存,这是一个频繁读的场景。可以使用redis来预减库存,在秒杀开始前可以在redis设值,比如redis.set(goodsId,100),这里预放的库存为100可以设值为常量),每次下单成功之后,Integer stock = (Integer)redis.get(goosId); 然后判断sock的值,如果小于常量值就减去1;不过注意当取消的时候,需要增加库存,增加库存的时候也得注意不能大于之间设定的总库存数(查询库存和扣减库存需要原子操作,此时可以借助lua脚本)下次下单再获取库存的时候,直接从redis里面查就可以了。
6、秒杀页面静态化
将商品的描述、参数、成交记录、图像、评价等全部写入到一个静态页面,用户请求不需要通过访问后端服务器,不需要经过数据库,直接在前台客户端生成,这样可以最大可能的减少服务器的压力。具体的方法可以使用freemarker模板技术,建立网页模板,填充数据,然后渲染网页
7、使用nginx
nginx是一个高性能web服务器,它的并发能力可以达到几万,而tomcat只有几百。通过nginx映射客户端请求,再分发到后台tomcat服务器集群中可以大大提升并发能力。
8、精简sql
典型的一个场景是在进行扣减库存的时候,传统的做法是先查询库存,再去update。这样的话需要两个sql,而实际上一个sql我们就可以完成的。可以用这样的做法:update miaosha_goods set stock =stock-1 where goos_id ={#goods_id} and version = #{version} and sock>0;这样的话,就可以保证库存不会超卖并且一次更新库存,还有注意一点这里使用了版本号的乐观锁,相比较悲观锁,它的性能较好
9、异步下单
为了提升下单的效率,并且防止下单服务的失败。需要将下单这一操作进行异步处理。最常采用的办法是使用队列,队列最显著的三个优点:异步、削峰、解耦。这里可以采用rabbitmq,在后台经过了限流、库存校验之后,流入到这一步骤的就是有效请求。然后发送到队列里,队列接受消息,异步下单。下完单,入库没有问题可以用短信通知用户秒杀成功。假如失败的话,可以采用补偿机制,重试。
10、服务降级
假如在秒杀过程中出现了某个服务器宕机,或者服务不可用,应该做好后备工作。之前的博客里有介绍通过Hystrix进行服务熔断和降级,可以开发一个备用服务,假如服务器真的宕机了,直接给用户一个友好的提示返回,而不是直接卡死,服务器错误等生硬的反馈。
11、令牌桶算法限流
基本思路是每个请求尝试获取一个令牌,后端只处理持有令牌的请求,生产令牌的速度和效率我们都可以自己限定,guava提供了RateLimter的api供我们使用。
public class TestRateLimiter{
public static void main(){
//1秒产生一个令牌
final RateLimiter rateLimiter = RateLimiter.create(1);
for(int i = 0;i < 10;i++){
//该方法阻塞线程,直到令牌桶中能取到令牌位置才继续向下执行
double waitTime = rateLimiter.acquire();
System.out.println("任务执行" + i + "等待时间" + waitTime);
}
System.out.println("执行结束");
}
}
通过RateLimiter来限定我们的令牌桶每秒产生1个令牌(生产的效率比较低),循环10次去执行任务。acquire会阻塞当前线程直到获取到令牌,也就是如果任务没有获取到令牌,会一直等待。那么请求就会卡在我们限定的时间内才可以继续往下走,这个方法返回的是线程具体等待的时间。执行如下:
可以看到任务执行的过程中,第1个是无需等待的,因为已经在开始的第1秒生产出了令牌。接下来的任务请求就必须等到令牌桶产生了令牌才可以继续往下执行。
如果没有获取到就会阻塞(有一个停顿的过程)。不过这个方式不太好,因为用户如果在客户端请求,如果较多的话,直接后台在生产token就会卡顿(用户体验较差),它是不会抛弃任务的,我们需要一个更优秀的策略:如果超过某个时间没有获取到,直接拒绝该任务。接下来再来个案例:
public class TestRateLimiter2 {
public static void main(String[] args) {
final RateLimiter rateLimiter = RateLimiter.create(1);
for (int i = 0; i < 10; i++) {
long timeOut = (long) 0.5;
//tryAcquire方法
boolean isValid = rateLimiter.tryAcquire(timeOut, TimeUnit.SECONDS);
System.out.println("任务" + i + "执行是否有效:" + isValid);
if (!isValid) {
continue;
}
System.out.println("任务" + i + "在执行");
}
System.out.println("结束");
}
}
设定一个超时的时间,如果在指定的时间内预估(注意是预估并不会真实的等待),如果能拿到令牌就返回true,如果拿不到就返回false.然后我们让无效的直接跳过,这里设定每秒生产1个令牌,让每个任务尝试在0.5秒获取令牌,如果获取不到,就直接跳过这个任务(放在秒杀环境里就是直接抛弃这个请求);程序实际运行如下:
只有第1个获取到了令牌,顺利执行了,下面的基本都直接抛弃了,因为0.5秒内,令牌桶(1秒1个)来不及生产就肯定获取不到返回false了。
这个限流策略的效率有多高呢?假如我们的并发请求是400万瞬间的请求,将令牌产生的效率设为每秒20个,每次尝试获取令牌的时间是0.05秒,那么最终测试下来的结果是,每次只会放行4个左右的请求,大量的请求会被拒绝,这就是令牌桶算法的优秀之处。
@ApiOperation(value="秒杀实现方式——Lock加锁")
@PostMapping("/start/lock")
public Result startLock(long skgId){
try{
log.info("来时秒杀方式一");
final long userId = (int)(new Random().nextDouble()*(99999-10000+1))+10000;
Result result = secondKillService.startSecondKillByLock(skgId,userId);
if(result != null){
log.info("用户:{}--{}", userId, result.get("msg"));
}else{
log.info("用户:{}--{}", userId, "哎呦喂,人也太多了,请稍后!");
}
}catch(Exception e){
e.printStackTrace();
}finally{}
return Result.ok();
}
/**
业务方法上加事务,在处理业务的时候加锁
*/
@Override
@Transactional(rollbackFor=Exception.class)
public Result startSecondKillByLock(long skgId,long userId){
lock.lock();
try{
//校验库存
SecondKill secondKill = secondKillMapper.selectById(skgId);
Integer number = secondKill.getNumber();
if(number > 0){
//扣库存
secondKill.setNumber(number - 1);
secondKillMapper.updateById(secondkILL);
//创建订单
SuccessKilled killed = new SuccessKilled();
killed.setSeckillId(skgId);
killed.setUserId(userId);
killed.setState((short) 0);
killed.setCreateTime(new Timestamp(System.currentTimeMillis()));
successKilledMapper.insert(killed);
//模拟支付
// 模拟支付
Payment payment = new Payment();
payment.setSeckillId(skgId);
payment.setSeckillId(skgId);
payment.setUserId(userId);
payment.setMoney(40);
payment.setState((short) 1);
payment.setCreateTime(new Timestamp(System.currentTimeMillis()));
paymentMapper.insert(payment);
} else{
return Result.error(SecondKillStateEnum.END);
}
}catch(Exception e){
throw new ScorpiosException("异常了个乖乖");
}finally{
lock.unlock();
}
return Result.ok(SecondKillStateEnum.SUCCESS);
}
上面这样写法是有问题的,会出现超卖的情况,看下测试结果:模拟1000个并发,抢100商品
这里在业务方法开始加了锁,在业务方法结束后释放了锁。但这里的事务提交却不是这样的,有可能在事务提交之前,就已经把锁释放了,这样会导致商品超卖现象。所以加锁的时机很重要!
主要问题出现在事务中锁释放的时机,事务未提交之前,锁已经释放。(事务提交是在整个方法执行完)。如何解决这个问题呢,就是把加锁步骤提前。
/**
控制层进行加锁的方式
*/
@ApiOperation(value="秒杀实现方式——Lock加锁")
@PostMapping("/start/lock")
public Result startLock(long skgId){
//在此加锁
lock.lock();
try{
log.info("开始秒杀方式一...");
final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000;
Result result = secondKillService.startSecondKillByLock(skgId, userId);
if(result != null){
log.info("用户:{}--{}", userId, result.get("msg"));
}else{
log.info("用户:{}--{}", userId, "哎呦喂,人也太多了,请稍后!");
}
}catch(Exception e){
e.printStackTrace();
}finally{
// 在此处释放锁
lock.unlock();
}
return Result.ok();
}
上面这样的加锁就可以解决事务未提交之前,锁释放的问题,可以分三种情况进行压力测试:
对于并发量大于商品数的情况,商品秒杀一般不会出现少卖的请况,但对于并发数小于等于商品数的时候可能会出现商品少卖情况,这也很好理解。
/**
AOP加锁
*/
//自定义AOP注解
@Target({ElementType.PARAMETER, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface ServiceLock {
String description() default "";
}
/**
定义切面类
*/
@Slf4j
@Component
@Scope
@Aspect
@Order(1) //order越小越是最先执行,但更重要的是最先执行的最后结束
public class LockAspect {
//互斥锁,参数默认false,不公平锁
private static Lock lock = new ReentrantLock(true);
//切点
@Pointcut("@annottion(com.scorpios.secondkill.aop.ServiceLock)")
public void lockAspect(){
}
//通知
@Around("lockAspect()")
public Object around(ProceedingJoinPoint joinPoint){
lock.lock();
Object obj = null;
try{
obj = joinPoint.proceed();
}catch(Throwable e){
e.printStackTrace();
}finally{
lock.unlock();
}
return obj;
}
}
/**
业务方法添加AOP
*/
@Override
@ServiceLock //使用AOP进行加锁
@Transactional(rollbackFor = Exception.class)
public Result startSecondKillByAop(long skgId, long userId) {
try {
// 校验库存
SecondKill secondKill = secondKillMapper.selectById(skgId);
Integer number = secondKill.getNumber();
if (number > 0) {
//扣库存
secondKill.setNumber(number - 1);
secondKillMapper.updateById(secondKill);
//创建订单
SuccessKilled killed = new SuccessKilled();
killed.setSeckillId(skgId);
killed.setUserId(userId);
killed.setState((short) 0);
killed.setCreateTime(new Timestamp(System.currentTimeMillis()));
successKilledMapper.insert(killed);
//支付
Payment payment = new Payment();
payment.setSeckillId(skgId);
payment.setSeckillId(skgId);
payment.setUserId(userId);
payment.setMoney(40);
payment.setState((short) 1);
payment.setCreateTime(new Timestamp(System.currentTimeMillis()));
paymentMapper.insert(payment);
} else {
return Result.error(SecondKillStateEnum.END);
}
} catch (Exception e) {
throw new ScorpiosException("异常了个乖乖");
}
return Result.ok(SecondKillStateEnum.SUCCESS);
}
/**
控制层
*/
@ApiOperation(value="秒杀实现方式二——Aop加锁")
@PostMapping("/start/aop")
public Result startAop(long skgId){
try {
log.info("开始秒杀方式二...");
final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000;
Result result = secondKillService.startSecondKillByAop(skgId, userId);
if(result != null){
log.info("用户:{}--{}", userId, result.get("msg"));
}else{
log.info("用户:{}--{}", userId, "哎呦喂,人也太多了,请稍后!");
}
} catch (Exception e) {
e.printStackTrace();
}
return Result.ok();
}
方法三:悲观锁
除了上面业务代码层面加锁外,还可以使用数据库自带锁进行并发控制
使用for update一定要加上事务,当事务处理完后,for update才会将行级锁解除
/**
如果请求数和秒杀商品数量一致,会出现少卖
*/
@ApiOperation(value="秒杀实现方式三——悲观锁")
@PostMapping("/start/pes/lock/one")
public Result startPesLockOne(long skgId){
try {
log.info("开始秒杀方式三...");
final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000;
Result result = secondKillService.startSecondKillByUpdate(skgId, userId);
if(result != null){
log.info("用户:{}--{}", userId, result.get("msg"));
}else{
log.info("用户:{}--{}", userId, "哎呦喂,人也太多了,请稍后!");
}
} catch (Exception e) {
e.printStackTrace();
}
return Result.ok();
}
@Override
@Transactional(rollbackFor = Exception.class)
public Result startSecondKillByUpdate(long skgId, long userId) {
try {
// 校验库存-悲观锁
SecondKill secondKill = secondKillMapper.querySecondKillForUpdate(skgId);
Integer number = secondKill.getNumber();
if (number > 0) {
//扣库存
secondKill.setNumber(number - 1);
secondKillMapper.updateById(secondKill);
//创建订单
SuccessKilled killed = new SuccessKilled();
killed.setSeckillId(skgId);
killed.setUserId(userId);
killed.setState((short) 0);
killed.setCreateTime(new Timestamp(System.currentTimeMillis()));
successKilledMapper.insert(killed);
//支付
Payment payment = new Payment();
payment.setSeckillId(skgId);
payment.setSeckillId(skgId);
payment.setUserId(userId);
payment.setMoney(40);
payment.setState((short) 1);
payment.setCreateTime(new Timestamp(System.currentTimeMillis()));
paymentMapper.insert(payment);
} else {
return Result.error(SecondKillStateEnum.END);
}
} catch (Exception e) {
throw new ScorpiosException("异常了个乖乖");
} finally {
}
return Result.ok(SecondKillStateEnum.SUCCESS);
}
/**
Dao层
*/
@Repository
public interface SecondKillMapper extends BaseMapper<SecondKill> {
/**
* 将此行数据进行加锁,当整个方法将事务提交后,才会解锁
* 利用for update进行对查询数据加锁,加的是行锁
* @param skgId
* @return
*/
@Select(value = "SELECT * FROM seckill WHERE seckill_id=#{skgId} FOR UPDATE")
SecondKill querySecondKillForUpdate(@Param("skgId") Long skgId);
}
方法四:悲观锁二
/**
悲观锁的第二种方式就是利用update更新命令来加表锁
* UPDATE锁表
* @param skgId 商品id
* @param userId 用户id
* @return
*/
@Override
@Transactional(rollbackFor = Exception.class)
public Result startSecondKillByUpdateTwo(long skgId, long userId) {
try {
// 不校验,直接扣库存更新
int result = secondKillMapper.updateSecondKillById(skgId);
if (result > 0) {
//创建订单
SuccessKilled killed = new SuccessKilled();
killed.setSeckillId(skgId);
killed.setUserId(userId);
killed.setState((short) 0);
killed.setCreateTime(new Timestamp(System.currentTimeMillis()));
successKilledMapper.insert(killed);
//支付
Payment payment = new Payment();
payment.setSeckillId(skgId);
payment.setSeckillId(skgId);
payment.setUserId(userId);
payment.setMoney(40);
payment.setState((short) 1);
payment.setCreateTime(new Timestamp(System.currentTimeMillis()));
paymentMapper.insert(payment);
} else {
return Result.error(SecondKillStateEnum.END);
}
} catch (Exception e) {
throw new ScorpiosException("异常了个乖乖");
} finally {
}
return Result.ok(SecondKillStateEnum.SUCCESS);
}
/**
Dao层
*/
@Repository
public interface SecondKillMapper extends BaseMapper<SecondKill> {
/**
* 将此行数据进行加锁,当整个方法将事务提交后,才会解锁
* @param skgId
* @return
*/
@Select(value = "SELECT * FROM seckill WHERE seckill_id=#{skgId} FOR UPDATE")
SecondKill querySecondKillForUpdate(@Param("skgId") Long skgId);
@Update(value = "UPDATE seckill SET number=number-1 WHERE seckill_id=#{skgId} AND number > 0")
int updateSecondKillById(@Param("skgId") long skgId);
}
方法五:乐观锁
利用version字段来判断数据是否被修改
乐观锁,不进行库存数量的校验,直接做库存扣减。
使用的乐观锁会出现大量的数据更新异常(抛异常就会导致购买失败)、如果配置的抢购人数比较少、比如120:100(人数:商品) 会出现少买的情况,不推荐使用乐观锁。
@ApiOperation(value="秒杀实现方式五——乐观锁")
@PostMapping("/start/opt/lock")
public Result startOptLock(long skgId){
try {
log.info("开始秒杀方式五...");
final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000;
// 参数添加了购买数量
Result result = secondKillService.startSecondKillByPesLock(skgId, userId,1);
if(result != null){
log.info("用户:{}--{}", userId, result.get("msg"));
}else{
log.info("用户:{}--{}", userId, "哎呦喂,人也太多了,请稍后!");
}
} catch (Exception e) {
e.printStackTrace();
}
return Result.ok();
}
@Override
@Transactional(rollbackFor = Exception.class)
public Result startSecondKillByPesLock(long skgId, long userId, int number) {
// 乐观锁,不进行库存数量的校验,直接
try {
SecondKill kill = secondKillMapper.selectById(skgId);
// 剩余的数量应该要大于等于秒杀的数量
if(kill.getNumber() >= number) {
int result = secondKillMapper.updateSecondKillByVersion(number,skgId,kill.getVersion());
if (result > 0) {
//创建订单
SuccessKilled killed = new SuccessKilled();
killed.setSeckillId(skgId);
killed.setUserId(userId);
killed.setState((short) 0);
killed.setCreateTime(new Timestamp(System.currentTimeMillis()));
successKilledMapper.insert(killed);
//支付
Payment payment = new Payment();
payment.setSeckillId(skgId);
payment.setSeckillId(skgId);
payment.setUserId(userId);
payment.setMoney(40);
payment.setState((short) 1);
payment.setCreateTime(new Timestamp(System.currentTimeMillis()));
paymentMapper.insert(payment);
} else {
return Result.error(SecondKillStateEnum.END);
}
}
} catch (Exception e) {
throw new ScorpiosException("异常了个乖乖");
} finally {
}
return Result.ok(SecondKillStateEnum.SUCCESS);
}
@Repository
public interface SecondKillMapper extends BaseMapper<SecondKill> {
/**
* 将此行数据进行加锁,当整个方法将事务提交后,才会解锁
* @param skgId
* @return
*/
@Select(value = "SELECT * FROM seckill WHERE seckill_id=#{skgId} FOR UPDATE")
SecondKill querySecondKillForUpdate(@Param("skgId") Long skgId);
@Update(value = "UPDATE seckill SET number=number-1 WHERE seckill_id=#{skgId} AND number > 0")
int updateSecondKillById(@Param("skgId") long skgId);
@Update(value = "UPDATE seckill SET number=number-#{number},version=version+1 WHERE seckill_id=#{skgId} AND version = #{version}")
int updateSecondKillByVersion(@Param("number") int number, @Param("skgId") long skgId, @Param("version")int version);
}
方法六:阻塞队列
利用阻塞队类,也可以解决高并发问题。其思想就是把接收到的请求按顺序存放到队列中,消费者线程逐一从队列里取数据进行处理,看下具体代码。
阻塞队列:这里使用静态内部类的方式来实现单例模式,在并发条件下不会出现问题。
// 秒杀队列(固定长度为100)
public class SecondKillQueue {
// 队列大小
static final int QUEUE_MAX_SIZE = 100;
// 用于多线程间下单的队列
static BlockingQueue<SuccessKilled> blockingQueue = new LinkedBlockingQueue<SuccessKilled>(QUEUE_MAX_SIZE);
// 使用静态内部类,实现单例模式
private SecondKillQueue(){};
private static class SingletonHolder{
// 静态初始化器,由JVM来保证线程安全
private static SecondKillQueue queue = new SecondKillQueue();
}
/**
* 单例队列
* @return
*/
public static SecondKillQueue getSkillQueue(){
return SingletonHolder.queue;
}
/**
* 生产入队
* @param kill
* @throws InterruptedException
* add(e) 队列未满时,返回true;队列满则抛出IllegalStateException(“Queue full”)异常——AbstractQueue
* put(e) 队列未满时,直接插入没有返回值;队列满时会阻塞等待,一直等到队列未满时再插入。
* offer(e) 队列未满时,返回true;队列满时返回false。非阻塞立即返回。
* offer(e, time, unit) 设定等待的时间,如果在指定时间内还不能往队列中插入数据则返回false,插入成功返回true。
*/
public Boolean produce(SuccessKilled kill) {
return blockingQueue.offer(kill);
}
/**
* 消费出队
* poll() 获取并移除队首元素,在指定的时间内去轮询队列看有没有首元素有则返回,否者超时后返回null
* take() 与带超时时间的poll类似不同在于take时候如果当前队列空了它会一直等待其他线程调用notEmpty.signal()才会被唤醒
*/
public SuccessKilled consume() throws InterruptedException {
return blockingQueue.take();
}
/**
* 获取队列大小
* @return
*/
public int size() {
return blockingQueue.size();
}
}
/**
消费秒杀队列:实现ApplicationRunner接口
*/
@Slf4j
@Component
public class TaskRunner implements ApplicationRunner{
@Autowired
private SecondKillService seckillService;
@Override
public void run(ApplicationArguments var){
new Thread(() -> {
log.info("队列启动成功");
while(true){
try {
// 进程内队列
SuccessKilled kill = SecondKillQueue.getSkillQueue().consume();
if(kill != null){
Result result = seckillService.startSecondKillByAop(kill.getSeckillId(), kill.getUserId());
if(result != null && result.equals(Result.ok(SecondKillStateEnum.SUCCESS))){
log.info("TaskRunner,result:{}",result);
log.info("TaskRunner从消息队列取出用户,用户:{}{}",kill.getUserId(),"秒杀成功");
}
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}).start();
}
}
@ApiOperation(value="秒杀实现方式六——消息队列")
@PostMapping("/start/queue")
public Result startQueue(long skgId){
try {
log.info("开始秒杀方式六...");
final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000;
SuccessKilled kill = new SuccessKilled();
kill.setSeckillId(skgId);
kill.setUserId(userId);
Boolean flag = SecondKillQueue.getSkillQueue().produce(kill);
// 虽然进入了队列,但是不一定能秒杀成功 进队出队有时间间隙
if(flag){
log.info("用户:{}{}",kill.getUserId(),"秒杀成功");
}else{
log.info("用户:{}{}",userId,"秒杀失败");
}
} catch (Exception e) {
e.printStackTrace();
}
return Result.ok();
}
方法七:Disruptor队列
Disruptor是个高性能队列,研发的初衷是解决内存队列的延迟问题,在性能测试中发现竟然与I/O操作处于同样的数量级,基于Disruptor开发的系统单线程能支撑每秒600万订单
// 事件生成工厂(用来初始化预分配事件对象)
public class SecondKillEventFactory implements EventFactory<SecondKillEvent> {
@Override
public SecondKillEvent newInstance() {
return new SecondKillEvent();
}
}
// 事件对象(秒杀事件)
public class SecondKillEvent implements Serializable {
private static final long serialVersionUID = 1L;
private long seckillId;
private long userId;
// set/get方法略
}
// 使用translator方式生产者
public class SecondKillEventProducer {
private final static EventTranslatorVararg<SecondKillEvent> translator = (seckillEvent, seq, objs) -> {
seckillEvent.setSeckillId((Long) objs[0]);
seckillEvent.setUserId((Long) objs[1]);
};
private final RingBuffer<SecondKillEvent> ringBuffer;
public SecondKillEventProducer(RingBuffer<SecondKillEvent> ringBuffer){
this.ringBuffer = ringBuffer;
}
public void secondKill(long seckillId, long userId){
this.ringBuffer.publishEvent(translator, seckillId, userId);
}
}
// 消费者(秒杀处理器)
@Slf4j
public class SecondKillEventConsumer implements EventHandler<SecondKillEvent> {
private SecondKillService secondKillService = (SecondKillService) SpringUtil.getBean("secondKillService");
@Override
public void onEvent(SecondKillEvent seckillEvent, long seq, boolean bool) {
Result result = secondKillService.startSecondKillByAop(seckillEvent.getSeckillId(), seckillEvent.getUserId());
if(result.equals(Result.ok(SecondKillStateEnum.SUCCESS))){
log.info("用户:{}{}",seckillEvent.getUserId(),"秒杀成功");
}
}
}
public class DisruptorUtil {
static Disruptor<SecondKillEvent> disruptor;
static{
SecondKillEventFactory factory = new SecondKillEventFactory();
int ringBufferSize = 1024;
ThreadFactory threadFactory = runnable -> new Thread(runnable);
disruptor = new Disruptor<>(factory, ringBufferSize, threadFactory);
disruptor.handleEventsWith(new SecondKillEventConsumer());
disruptor.start();
}
public static void producer(SecondKillEvent kill){
RingBuffer<SecondKillEvent> ringBuffer = disruptor.getRingBuffer();
SecondKillEventProducer producer = new SecondKillEventProducer(ringBuffer);
producer.secondKill(kill.getSeckillId(),kill.getUserId());
}
}
@ApiOperation(value="秒杀实现方式七——Disruptor队列")
@PostMapping("/start/disruptor")
public Result startDisruptor(long skgId){
try {
log.info("开始秒杀方式七...");
final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000;
SecondKillEvent kill = new SecondKillEvent();
kill.setSeckillId(skgId);
kill.setUserId(userId);
DisruptorUtil.producer(kill);
} catch (Exception e) {
e.printStackTrace();
}
return Result.ok();
}
经过测试,发现使用Disruptor队列队列,与自定义队列有着同样的问题,也会出现超卖的情况,但效率有所提高。