- 【机器学习】探索未来科技的前沿:人工智能、机器学习与大模型
AIGC零基础入门小白
AI大模型大模型教程人工智能机器学习科技AI大模型AIGCAI教程大模型教程
文章目录引言一、人工智能:从概念到现实1.1人工智能的定义1.2人工智能的发展历史1.3人工智能的分类1.4人工智能的应用二、机器学习:人工智能的核心技术2.1机器学习的定义2.2机器学习的分类2.3机器学习的实现原理2.4机器学习的应用2.5机器学习的示例代码2.6解释代码三、大模型:推动AI前沿发展的关键技术3.1大模型的定义3.2大模型的发展历程3.3深度学习与神经网络3.4大模型的优势与挑
- 现代人工智能综合分类:大模型时代的架构、模态与生态系统
司南锤
economics人工智能分类数据挖掘
目录引言:人工智能的第四次浪潮与新分类的必要性第一节:大型模型范式的基础支柱1.1规模化假说:算力、数据与算法的三位一体1.2“涌现能力”之谜:当“更多”变为“不同”1.3自监督学习(SSL)革命第二节:大型模型的技术分类学2.1Transformer:现代人工智能的架构基石2.2架构分化:一种功能性分类2.3提升效率与规模:专家混合模型(MoE)2.4超越Transformer:下一代架构的探索
- 人工智能入门指南:从基础概念到实际应用
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。https://www.captainbed.cn/north文章目录1.**人工智能的基本概念**1.1什么是人工智能?1.2人工智能的分类2.**人工智能的核心技术**2.1机器学习(MachineLearning)2.1.1机器学习的类型2.1.2机器学习流程2.2深度学习(DeepLearni
- 一元线性回归模型与最小二乘法
liuzx32
监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。回归分析中,如果只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。对于二维空间线性是一条直线;对于三维空间线性是一个平面,对于多维空间线
- 数字化转型之需求分解
数字化转型魔法师
经验分享
前言上一章我们讲了什么是需求?从多个维度进行了分析,方便大家理解。这一张我们要讲如何完善需求,那怎么完善需求呢?该从哪些方面处理呢?今天进入分享环节。一、如何完善需求1、需求分类需求有多个维度,上一章给大家讲了有时间维度、功能性维度,其实还有复杂性维度、和重要性维度等。因为要方便大家理解,所以上一章节就只讲了时间和功能性两个方面,复杂性和重要性是抽象的不易于理解。那么知道这些需求分类有什么用呢?如
- 评估遥感云雾浓度的无参化指标(适用于其它合成雾的场景)
夏天是冰红茶
去雾与加雾opencv计算机视觉人工智能
前言本文总结了四种用于评估图像雾浓度的无参考指标:FADE、densityD、AuthESI和JSFD。FADE通过MATLAB实现,能较好反映雾气浓度但计算耗时;densityD基于TensorFlow,对天空场景较为敏感;AuthESI主要用于评估合成雾真实性,不适用于浓度评估;JSFD结合HSV空间S值、白点比例和暗通道特征,准确性较高但计算时间长。实验表明,FADE和JSFD以及densi
- 基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解
基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解文章目录基于探路者算法优化的正则化极限学习机(RELM)的分类问题求解1.RELM原理2.分类问题求解3.基于探路者算法优化的RELM4.实验结果5.Matlab代码1.RELM原理极限学习机(ELM)具有训练速度快、泛化性能好的优点。极限学习机的结构是一种典型的单隐层前馈神经网络(SLFN)。极限学习机的结构见图RELM算法:若NNN
- 基于探路者算法优化的核极限学习机(KELM)分类算法
智能算法研学社(Jack旭)
智能优化算法应用机器学习#核极限学习机(KELM)算法分类数据挖掘
基于探路者算法优化的核极限学习机(KELM)分类算法文章目录基于探路者算法优化的核极限学习机(KELM)分类算法1.KELM理论基础2.分类问题3.基于探路者算法优化的KELM4.测试结果5.Matlab代码摘要:本文利用探路者算法对核极限学习机(KELM)进行优化,并用于分类1.KELM理论基础核极限学习机(KernelBasedExtremeLearningMachine,KELM)是基于极限
- 传感器基础:传感器的基本原理_3.传感器的分类与应用
kkchenkx
信号仿真2信号处理
3.传感器的分类与应用在上一节中,我们讨论了传感器的基本原理和工作方式。本节将详细介绍传感器的分类及其在不同领域的应用。传感器可以根据不同的标准进行分类,例如工作原理、输出信号类型、测量对象等。了解传感器的分类有助于我们更好地选择和应用适合特定需求的传感器。3.1传感器的分类3.1.1按工作原理分类3.1.1.1电阻式传感器电阻式传感器通过测量电阻的变化来检测物理量的变化。常见的电阻式传感器包括应
- 力扣题目算法分类【持续更新】
Gene_INNOCENT
比赛题解各类重要算法讲解力扣算法分类
基础算法二分704.二分查找-简单-整数二分34.在排序数组中查找元素的第一个和最后一个位置-中等69.x的平方根-简单-浮点二分287.寻找重复数-中等-二分答案410.分割数组的最大值-困难-二分答案4.寻找两个正序数组的中位数-困难
- Python零基础入门:魔法方法详解
一、什么是魔法方法?魔法方法(MagicMethods)是Python中一种特殊的方法,它们以双下划线(__)开头和结尾(如__init__、__str__等)。魔法方法允许你定义类在特定情况下的行为,例如初始化、字符串表示、运算符重载等。二、常见的魔法方法分类1.构造和初始化__new__(cls,[...]):创建实例时调用的第一个方法__init__(self,[...]):实例初始化方法_
- NiFi Processors概述
一个老冯
为了能够创建一个高效的NiFi数据数据流程,我们需要了解有哪些Processor类型可以使用。每个新的NiFi版本Processor数量都会增加,当前NiFi版本为1.12.1,内置了288个类型的Proccessor,这些Processor提供从多个不同系统接收数据、路由、转换、处理、拆分和聚合数据以及将数据分发到多个系统的功能。按照功能分类:image.png.procesor分类说明1.1数
- 在二分类任务中如何处理包含中文的类别特征
Dush32
分类数据挖掘人工智能机器学习数据分析
在机器学习中,处理类别特征(CategoricalFeatures)是常见的任务,特别是在中文数据中,很多类别特征如省份、城市等都是字符串类型。如何将这些类别变量转换为模型可以理解的数值格式,是每个数据科学家都必须面对的挑战。在这篇文章中,我们将探讨两种常见的类别特征编码方法:astype('category')和LabelEncoder,并比较它们在二分类任务中的效果。我们以“省份”这一类别特征
- 基于用户画像的商品推荐系统
Dush32
机器学习人工智能python推荐算法
随着人工智能和大数据技术的进步,产品推荐系统成为了现代广告与电商平台中不可或缺的部分。通过深度挖掘用户的行为数据,能够为广告主提供精准的用户画像,从而更高效地推荐相关产品,提升购买转化率。本项目基于科大讯飞AI营销云大赛的赛题,目的是利用用户画像进行产品推荐,预测用户是否会购买相应商品。我们使用了机器学习的二分类模型,通过分析用户的性别、年龄、常驻地、机型等信息,来判断用户的付费行为。项目目标:本
- React 英语打地鼠游戏——一个寓教于乐的英语学习游戏
伍哥的传说
前端源码分享react.js游戏学习
英语打地鼠游戏一个寓教于乐的英语学习游戏,通过经典的打地鼠玩法帮助用户学习英语单词。✨项目特色游戏化学习经典打地鼠玩法:6个洞穴,听英文选单词即时反馈:答对/答错立即语音提示计分系统:每答对一题得10分,激发学习动力60秒限时:紧张刺激的游戏节奏多媒体体验双语语音播报:英文单词标准发音+中文反馈流畅动画效果:基于Anime.js的精美动画响应式设计:支持手机、平板、电脑多端适配丰富词库多主题分类:
- 2020.12.15 周二早评
缠论悟道
#财经##股票##缠论股票投资#2020.12.15周二早评上证指数30F回调走势中。5F下跌中枢构建中,关键区间3384~3387,如遇阻力不能突破,将迎接新一轮下跌!今日操作:1.高开:第一压力位3387,第二压力3403,第三压力位3428。2.低开:第一支撑位3344,第二支撑位3291,第三支撑位3202。完全分类:1.1F反弹回到3357,发生中枢扩展,形成5F下跌中枢,随后将跌破33
- 数字滤波器原理及应用 借助matlab,数字滤波器原理及应用(借助Matlab)
陈慈龙
数字滤波器原理及应用借助matlab
第l章数字信号处理引言1.1引言1.2数字信号处理起源1.3信号域1.4信号分类1.5DStP:一个学科第2章采样原理2.1引言2.2第l章数字信号处理引言1.1引言1.2数字信号处理起源1.3信号域1.4信号分类1.5DStP:一个学科第2章采样原理2.1引言2.2香农采样原理2.3信号重构2.4香农插值2.5采样方法2.6多通道采样2.7MATLAB音频选项第3章混叠3.1引言3.2混叠3.3
- Python中gdal实现栅格遥感影像读取计算及基于质量评估QA波段筛选掩膜数据
疯狂学习GIS
本文介绍基于Python语言中gdal模块,对遥感影像数据进行栅格计算,同时基于QA波段对像元加以筛选、掩膜的操作。 前期系列博客1(https://blog.csdn.net/zhebushibiaoshifu/article/details/113929859)详细介绍了基于ENVI、ERDAS等软件对遥感影像加以各类处理的操作,系列博客2(https://blog.csdn.net/z
- 支持向量回归(Support Vector Regression, SVR)详解
DuHz
回归数据挖掘人工智能信号处理算法数学建模机器学习
支持向量回归(SupportVectorRegression,SVR)详解支持向量回归(SupportVectorRegression,简称SVR)是一种基于支持向量机(SVM)的回归分析方法,广泛应用于预测和模式识别领域。SVR通过在高维空间中寻找一个最优超平面,以最大化数据点与超平面的间隔,从而实现对连续型变量的预测。本文将深入探讨SVR的理论基础、数学原理、模型构建、参数选择、训练与优化、应
- 【转】【译】How to Handle Very Long Sequences with LSTM(LSTM RNN 超长序列处理)
开始奋斗的胖子
机器学习RNNLSTM序列深度学习
原文地址http://machinelearningmastery.com/handle-long-sequences-long-short-term-memory-recurrent-neural-networks/一个长的输入序列却只对应一个或者一小段输出就是我们经常说的序列标注和序列分类。主要包括下面一些例子:包含上千个词的文件情感分类(NLP)包含上千个时间状态的脑电痕迹分类(Medici
- C++ 程序设计考量表
君鼎
C++c++开发语言
C++程序设计考量表1.类设计主要考量具体问题设计决策影响职责类的职责是否单一?是否有违反单一职责原则的可能性?决定是否需要拆分类或合并相关职责继承关系是否需要继承?是公有继承(is-a关系)还是组合(has-a关系)?影响是否使用基类、抽象类或多态封装性哪些成员需要暴露?哪些需要隐藏?决定public/private/protected访问权限对象生命周期是否需要自定义构造函数/析构函数?是否需
- rce漏洞测试
目录什么是RCE?漏洞介绍漏洞分类远程命令执行29关30关31关32~36关37关38关39关40关41关42关43关44关45关46~49关总结什么是RCE?漏洞介绍RCE漏洞,可以让攻击者直接向后台服务器远程注入操作系统命令或者代码,从而控制后台系统。RCE主要指远程代码执行和远程命令执行,CTFHub中将文件包含漏洞也看作RCE漏洞。漏洞分类远程命令执行远程代码执行文件包含漏洞实际上,RCE
- xss的利用
m0_73832254
xss前端
目录一、XSS的原理和分类二、常见的XSS标签和属性三、Xss漏洞分类1.反射性xss反射性XSS典型攻击场景基于URL参数的反射性XSS基于表单参数的反射性XSS利用HTML标签属性的反射性XSS2.存储型XSS存储型XSS的高频攻击场景社交平台评论区论坛发帖与私信系统电商平台商品描述3.基于DOM的XSS攻击原理剖析DOM型XSS典型攻击场景与案例基于URL参数的DOM型XSS基于localS
- 爬虫实战案例(两个)
AI 嗯啦
爬虫
该博客展示两个简单的爬虫实战案例,一个是从人民邮电出版社上爬取其中一个分类的全部图书信息,另一个是在苏宁易购上爬取某个商品的好评和差评,用两个简单的案例讲解爬虫在实际情况下的运作流程一、获取图书信息需求:统计人民邯电出版社官网中与关键词“python”有关的全部图书,包含图书名、价格、作者名等信息,并将获取的信息写入“Excel图书汇总,txt”文件中。流程:配置浏览器并打开目标网站搜索"Pyth
- 第二次总结(xss、js原型链)
1XSS漏洞文章目录1XSS漏洞1.1XSS的原理1.2XSS漏洞分类1.1.1反射性xss特点常见场景1.1.2DOM型XSS**特点**常见场景1.1.3存储型XSS**特点**常见场景1.3XSS漏洞的黑盒测试1.4XSS漏洞的白盒测试2XSS练习2.1反射型Level1Level2总结2.2DOM型level1DOM型xss思路:2.3存储型level1存储型xss思路:2.4利用编码绕过
- 视角与分类
戴老师成长记录仪
今天的文章可能会比较抽象,和你一起来探讨人看问题的视角、以及人看问题的分类。先来回顾一下,我们之前和大家分享的,有关人的大脑方面的知识,我们人类的大脑的一个非常重要的特性,就是利用大脑的已经知道的东西来判断未知的东西。一旦我们看到生活中、工作中的一个事物,我的大脑的海绵体就会不断在我们的大脑中搜索有没有这样的信息,若是有的话,就是自动的调出这方面的信息,进行比对、类比,然后采取一些相应的策略。这是
- Linux 命令:uname
hweiyu00
Linux命令linux运维服务器
Linuxuname命令详细教程uname(UnixName)是Linux系统中用于获取系统基本信息的基础命令。它能快速展示操作系统、内核、主机名等关键信息,是系统诊断和环境确认的常用工具。资料已经分类整理好:https://pan.quark.cn/s/26d73f7dd8a7一、基本语法uname[选项]核心功能:默认只显示操作系统名称(如Linux)。通过选项可获取更详细的系统信息。二、常用
- 纯甄酸奶保质期多久?纯甄酸奶保质期几个月?
优惠券高省
纯甄酸奶的保质期是5个月,酸牛奶(俗称酸奶)是一种极其重要和常见的乳制品,它是以牛乳或复原乳为主要原料,添加或不添加辅料,经巴氏杀菌后,接入乳酸菌菌种,保温发酵制成的产品,是一种老少皆宜的营养食品。但它带的菌还在不断发酵,所以保质期不长。按常理来说,任何酸奶的保质期都不能超过半个月,且是放置于12摄氏度左右的环境下。但事实上,酸奶的保质期还得分类来讲。大家好,我是高省APP联合创始人浅浅导师,高省
- Lecture 5:Training versus Testing
薛家掌柜的
回顾一下前四个Lecture,Lecture1讲的是找一个使得(也就是),Lecture2讲的是使得,Lecture3讲的是机器学习的分类,Lecture4讲的是让。那么,我们就有两个核心问题需要解决了。我们如何保证尽可能地靠近?我们如何使得足够小?而在这两个问题里面,假设集大小又扮演着什么样的角色?应该多大呢?如果是一个很小的,能够满足,但是可选的假设又太少了。如果是一个很大的,可选的假设很多,
- 筑基2 变态心理学 1概述
胡晓会
胡晓会中原焦点,高级七期讲师八期中级九期、心理咨询师、婚姻家庭咨询师2022.8.12坚持分享第1602天变态心理与心理健康八个章节学习不要对号入座,记住自己是正常的。1.变态心理学概述2.心理正常与心理异常3.常见心理异常的症状4.常见精神障碍5.心理健康与心理不健康6.心理不健康状态的分类7.关于健康心理学8.压力与健康变态心理学概述:人的心理心理正常心理异常1.大多数人都是心理正常的。心里异
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_